

ipwhois

ipwhois is a Python package focused on retrieving and parsing whois data
for IPv4 and IPv6 addresses.

Project Info

	Readme
	Summary

	Features

	Links

	Dependencies

	Installing

	Firewall Ports

	API

	Contributing

	IP Reputation Support

	Domain Support

	Special Thanks

	Contributing
	Issue submission

	Pull Requests

	License

	Changes
	1.0.0 (2017-07-30)

	0.15.1 (2017-02-16)

	0.15.0 (2017-02-02)

	0.14.0 (2016-08-29)

	0.13.0 (2016-04-18)

	0.12.0 (2016-03-28)

	0.11.2 (2016-02-25)

	0.11.1 (2015-12-17)

	0.11.0 (2015-11-02)

	0.10.3 (2015-08-14)

	0.10.2 (2015-05-19)

	0.10.1 (2015-02-09)

	0.10.0 (2015-02-09)

	Changes (Archive)
	0.9.1 (2014-10-14)

	0.9.0 (2014-07-27)

	0.8.2 (2014-05-12)

	0.8.1 (2014-03-05)

	0.8.0 (2014-02-18)

	0.7.0 (2014-01-14)

	0.6.0 (2014-01-13)

	0.5.2 (2013-12-07)

	0.5.1 (2013-12-03)

	0.5.0 (2013-11-20)

	0.4.0 (2013-10-17)

	0.3.0 (2013-09-30)

	0.2.1 (2013-09-27)

	0.2.0 (2013-09-23)

	0.1.9 (2013-09-18)

	0.1.8 (2013-09-17)

	0.1.7 (2013-09-16)

	0.1.6 (2013-09-16)

	0.1.5 (2013-09-13)

	0.1.4 (2013-09-12)

	0.1.3 (2013-09-11)

	0.1.2 (2013-09-10)

	0.1.1 (2013-09-09)

	0.1.0 (2013-09-06)

	Upgrade Notes
	v1.0.0

	v0.14.0

	v0.11.0

API Documentation

	RDAP (Recommended)
	Input

	Output

	Usage Examples

	Legacy Whois
	Input

	Output

	Usage Examples

	NIR (National Internet Registry)
	Input (IPWhois Wrapper)

	Input (Direct)

	Output

	Usage Examples

	IP ASN Lookups
	IP ASN Input

	IP ASN Output

	IP ASN Usage Examples

	ASN Origin Lookups
	ASN Origin Input

	ASN Origin Output

	ASN Origin Usage Examples

	Utilities
	Country Codes

	Human Readable Fields

	Usage Examples

	CLI
	ipwhois_cli.py

	ipwhois_utils_cli.py

	Experimental Functions
	Bulk ASN Lookups

	Bulk RDAP Lookups

Code

	Library Structure

ipwhois

[image: https://travis-ci.org/secynic/ipwhois.svg?branch=master]
 [https://travis-ci.org/secynic/ipwhois][image: https://coveralls.io/repos/github/secynic/ipwhois/badge.svg?branch=master]
 [https://coveralls.io/github/secynic/ipwhois?branch=master][image: https://codeclimate.com/github/secynic/ipwhois/badges/issue_count.svg]
 [https://codeclimate.com/github/secynic/ipwhois][image: https://img.shields.io/badge/license-BSD%202--Clause-blue.svg]
 [https://github.com/secynic/ipwhois/tree/master/LICENSE.txt][image: https://img.shields.io/badge/python-2.6%2C%202.7%2C%203.3+-blue.svg]
 [https://docs.python.org][image: https://img.shields.io/badge/docs-latest-green.svg?style=flat]
 [https://ipwhois.readthedocs.io/en/latest][image: https://img.shields.io/badge/docs-dev-yellow.svg?style=flat]
 [https://ipwhois.readthedocs.io/en/dev]
Summary

ipwhois is a Python package focused on retrieving and parsing whois data
for IPv4 and IPv6 addresses.

Note

If you are experiencing latency issues, it is likely related to rate
limiting. Rate limiting is based on your source IP, which may be a problem
with multiple users behind the same proxy. Additionally, LACNIC implements
aggressive rate limiting. Experimental bulk query support is new as of
v1.0.0.

Features

	Parses a majority of whois fields in to a standard dictionary

	IPv4 and IPv6 support

	Supports RDAP queries (recommended method, see:
https://tools.ietf.org/html/rfc7483)

	Proxy support for RDAP queries

	Supports legacy whois protocol queries

	Referral whois support for legacy whois protocol

	Recursive network parsing for IPs with parent/children networks listed

	National Internet Registry support for JPNIC and KRNIC

	Supports IP to ASN and ASN origin queries

	Python 2.6+ and 3.3+ supported

	Useful set of utilities

	Experimental bulk query support

	BSD license

	100% core code coverage (See ‘# pragma: no cover’ for exclusions)

	Human readable field translations

	Full CLI for IPWhois with optional ANSI colored console output.

Links

Documentation

GitHub latest

https://ipwhois.readthedocs.io/en/latest

GitHub dev

https://ipwhois.readthedocs.io/en/dev

Examples

https://github.com/secynic/ipwhois/tree/master/ipwhois/examples

Github

https://github.com/secynic/ipwhois

Pypi

https://pypi.org/project/ipwhois

Changes

https://ipwhois.readthedocs.io/en/latest/CHANGES.html

Upgrade Notes

https://ipwhois.readthedocs.io/en/latest/UPGRADING.html

Dependencies

Python 2.6:

dnspython
ipaddr
argparse (required only for CLI)

Python 2.7:

dnspython
ipaddr

Python 3.3+:

dnspython

Installing

Latest release from PyPi:

pip install --upgrade ipwhois

GitHub - Stable:

pip install -e git+https://github.com/secynic/ipwhois@master#egg=ipwhois

GitHub - Dev:

pip install -e git+https://github.com/secynic/ipwhois@dev#egg=ipwhois

Firewall Ports

ipwhois needs some outbound firewall ports opened from your host/server.

	ASN (DNS):	53/tcp

	ASN (Whois):	43/tcp

	ASN (HTTP):	80/tcp

443/tcp (Pending)

	RDAP (HTTP):	80/tcp

443/tcp (Pending)

	NIR (HTTP):	80/tcp

443/tcp (KRNIC)

	Legacy Whois:	43/tcp

	Get Host:	43/tcp

API

IPWhois (main class)

ipwhois.IPWhois is the base class for wrapping RDAP and Legacy Whois lookups.
Instantiate this object, then call one of the lookup functions:

RDAP (HTTP) - IPWhois.lookup_rdap()
OR
Legacy Whois - IPWhois.lookup_whois()

Input

	Key
	Type
	Description

	address
	str
	An IPv4 or IPv6 address as a string, integer,
IPv4Address, or IPv6Address.

	timeout
	int
	The default timeout for socket connections
in seconds. Defaults to 5.

	proxy_opener
	object
	The urllib.request.OpenerDirector request for
proxy support or None.

	allow_permutations
	bool
	Allow net.Net() to use additional methods if
DNS lookups to Cymru fail. WARNING
deprecated in favor of new argument
asn_methods. Defaults to True.

RDAP (HTTP)

IPWhois.lookup_rdap() is the recommended lookup method. RDAP provides a
far better data structure than legacy whois and REST lookups (previous
implementation). RDAP queries allow for parsing of contact information and
details for users, organizations, and groups. RDAP also provides more detailed
network information.

RDAP documentation:

https://ipwhois.readthedocs.io/en/latest/RDAP.html

Legacy Whois

Legacy Whois documentation:

https://ipwhois.readthedocs.io/en/latest/WHOIS.html

National Internet Registries

This library now supports NIR lookups for JPNIC and KRNIC. Previously, Whois
and RDAP data for Japan and South Korea was restricted. NIR lookups scrape
these national registries directly for the data restricted from regional
internet registries. NIR queries are enabled by default via the inc_nir
argument in the IPWhois.lookup_*() functions.

https://ipwhois.readthedocs.io/en/latest/NIR.html

Autonomous System Numbers

This library now supports ASN origin lookups via Whois and HTTP.

IP ASN functionality was moved to its own parser API (IPASN).

There is no CLI for these yet.

https://ipwhois.readthedocs.io/en/latest/ASN.html

Utilities

Utilities documentation:

https://ipwhois.readthedocs.io/en/latest/UTILS.html

Scripts

CLI documentation:

https://ipwhois.readthedocs.io/en/latest/CLI.html

Experimental Functions

Caution

Functions in experimental.py contain new functionality that has not yet
been widely tested. Bulk lookup support contained here can result in
significant system/network resource utilization. Additionally, abuse of
this functionality may get you banned by the various services queried by
this library. Use at your own discretion.

Experimental functions documentation:

https://ipwhois.readthedocs.io/en/latest/EXPERIMENTAL.html

Contributing

https://ipwhois.readthedocs.io/en/latest/CONTRIBUTING.html

IP Reputation Support

This feature is under consideration. Take a look at TekDefense’s Automater:

TekDefense-Automater [https://github.com/1aN0rmus/TekDefense-Automater]

Domain Support

There are no plans for domain whois support in this project.

Look at Sven Slootweg’s
python-whois [https://github.com/joepie91/python-whois] for a library with
domain support.

Special Thanks

Thank you JetBrains for the PyCharm [https://www.jetbrains.com/pycharm/]
open source support!

Thank you Chris Wells (@cdubz [https://github.com/cdubz]) for your
extensive testing on the experimental functions!

Last but not least, thank you to all the issue submitters and contributors.

Contributing

Note

If you are looking for items to contribute, start by looking at current
open issues [https://github.com/secynic/ipwhois/issues] and search the
source code for “TODO” items.

Issue submission

Issues are tracked on GitHub:

https://github.com/secynic/ipwhois/issues

Follow the guidelines detailed in the appropriate section below. As a general
rule of thumb, provide as much information as possible when submitting issues.

Bug reports

	Title should be a short, descriptive summary of the bug

	Include the Python and ipwhois versions affected

	Provide a context (with code example) in the description of your issue. What
are you attempting to do?

	Include the full obfuscated output. Make sure to set DEBUG logging:

import logging
LOG_FORMAT = ('[%(asctime)s] [%(levelname)s] [%(filename)s:%(lineno)s] '
 '[%(funcName)s()] %(message)s')
logging.basicConfig(level=logging.DEBUG, format=LOG_FORMAT)

	Include sources of information with links or screenshots

	Do you have a suggestion on how to fix the bug?

Feature Requests

	Title should be a short, descriptive summary of the feature requested

	Provide use case examples

	Include sources of information with links or screenshots

	Do you have a suggestion on how to implement the feature?

Testing

You may have noticed that Travis CI tests are taking longer to complete.
This is due to the enabling of online lookup tests (network tests in the
ipwhois/tests/online directory).

When running local tests, you may include these tests by adding the
–include=online flag to your nosetests command.

Example:

nosetests -v -w ipwhois --include=online --exclude=stress --with-coverage
 --cover-package=ipwhois

Questions

I am happy to answer any questions and provide assistance where possible.
Please be clear and concise. Provide examples when possible. Check the
ipwhois documentation [https://ipwhois.readthedocs.io/en/latest] and the
issue tracker [https://github.com/secynic/ipwhois/issues] before asking a
question.

Questions can be submitted as issues. Past questions can be searched by
filtering the label “question”.

You can also message me on IRC. I am usually idle on freenode in the
Python channels [https://www.python.org/community/irc/]

Pull Requests

What to include

Aside from the core code changes, it is helpful to provide the following
(where applicable):

	Unit tests

	Examples

	Sphinx configuration changes in /docs

	Requirements (python2.txt, python3.txt, docs/requirements.txt)

GitFlow Model

This library follows the GitFlow model. As a contributor, this is simply
accomplished by the following steps:

	Create an issue (if there isn’t one already)

	Branch from dev (not master), try to name your branch to reference the issue
(e.g., issue_123_feature, issue_123_bugfix).

	Merge pull requests to dev (not master). Hotfix merges to master will
only be allowed under extreme/time sensitive circumstances.

Guidelines

	Title should be a short, descriptive summary of the changes

	Follow PEP 8 [https://www.python.org/dev/peps/pep-0008/] where possible.

	Follow the Google docstring style guide [https://google.github.io/styleguide/pyguide.html#Comments] for
comments

	Must be compatible with Python 2.6, 2.7, and 3.3+

	Break out reusable code to functions

	Make your code easy to read and comment where necessary

	Reference the GitHub issue number in the description (e.g., Issue #01)

	When running nosetests, make sure to add the following arguments:

--verbosity=3 --nologcapture --include=online --cover-erase

If you would like to exclude the aggressive online stress tests, add to the
above:

--exclude stress

License

Copyright (c) 2013-2017 Philip Hane
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Changelog

1.0.0 (2017-07-30)

	Deprecated asn_alts, allow_permutations in favor of new asn_methods (#158)

	Added new exception ASNOriginLookupError (#158)

	KRNIC lookups changed to HTTPS (#166)

	Added experimental functions - get_bulk_asn_whois, bulk_lookup_rdap (#134)

	Fixed bug in NIR lookups that caused addresses with multi-line contacts to
error (#172 - kwheeles)

	Added IANA Reserved CIDR 198.97.38.0/24 to ipv4_is_defined (#174)

	Fixed bug in RDAP notices/remarks parsing that would omit partial entries
missing one or more of title, description, links (#176)

	Added new return key asn_description via verbose ASN DNS lookup support and
modified ASN whois lookups. New argument get_asn_description to disable
additional DNS lookup (#176)

	Fixed some test function naming errors

	Added new generators to utils.py: ipv4_generate_random and
ipv6_generate_random (#183)

	Moved upgrade notes to new UPGRADING.rst

	Deprecated unnecessary protected class functions, changed to public in
asn.py, nir.py, and whois.py (#184)

	net.Net.get_host(), utils.ipv4_is_defined(), and utils.ipv6_is_defined now
return namedtuple instead of tuple.

	Changed docstrings to Google standard for better napoleon parsing (#185)

	Removed deprecated IPWhois.lookup() - This was moved to
IPWhois.lookup_whois()

	Fixed ‘nets’->’range’ bug for legacy whois CIDR net_range values (#188)

	Fixed a bug in IPASN/Net that caused the ASN result to vary if Cymru has
more than one ASN listed for an IP (#190)

	Updated ElasticSearch example for ES v5.5.1 (#138)

0.15.1 (2017-02-16)

	Fixed IPv6 parsing for ASN origin lookups and added tests (#162 - ti-mo)

	Fixed recursive role parsing at depths greater than 0 (#161 - cdubz)

0.15.0 (2017-02-02)

	Python 3.3+ dnspython3 requirement changed to dnspython (#155)

	Added ASN origin lookup support (#149)

	Moved ASN parsing from net.Net.get_asn_*() to new class asn.IPASN.
The original functions now return the raw query (#157)

	net.Net.lookup_asn() is deprecated in favor of asn.IPASN.lookup() (#157)

	Added new exception ASNParseError (#157)

	Fixed rate-limiting exception handling for when HTTP errors are returned
rather than JSON errors (rikonor - #144)

	Fixed rate-limit infinite recursion bug for legacy whois (rikonor - #144)

	Fixed bug in net.Net.get_http_raw() that would pass the encoded form_data on
retry rather than the original argument.

	Removed nose requirements and fixed travis.yml for updated pip

	Documentation updates

	Code style tweaks

	Updated tests and version info for Python 3.6

	Added basic stress tests (#144)

	Minor tweaks to existing tests

0.14.0 (2016-08-29)

	Changed legacy whois emails output type to list (#133)

	Fixed retry count non-decrementing infinite loop in
ipwhois.net.Net.get_whois() (issue #125 - krader1961)

	Added new function ipwhois.net.Net.get_http_raw() and tests (#67)

	Added National Internet Registry (JPNIC, KRNIC) support (#67). Enabled by
default in IPWhois.lookup_*(). Disable by passing inc_nir=False. Optionally,
lower level code can call nir.NIRWhois(). This enhancement results in extra
network queries, but more detailed information for NIRs.

	Added utils CLI (ipwhois_utils_cli.py) - #121. Installed to your environments
Scripts dir. This is a wrapper for utils.py.

	Documentation improvements (#123)

	kw arg readability (#115)

	Replaced usage of args with script_args in ipwhois_cli.py

	Minor optimization in whois.py and online/test_whois.py

	Added coveralls integration and re-enabled online tests with Travis CI

	Added Read the Docs support (#132)

	Added documentation (Sphinx) requirements.txt (#132)

	Fixed test imports

	Added –json argument (output in JSON format) to ipwhois_cli.py (#135)

0.13.0 (2016-04-18)

	Added events_actor parsing for RDAP results.

	Added example for caching data via Redis (#81)

	Added normalization (human-readable field information) in hr.py (#47)

	README word wrap fix (#102)

	Fixed bug in exception handling for ASN HTTP lookups.

	Fixed bug in IPWhois.lookup_rdap() that caused ASN HTTP lookup responses to
be used in place of RDAP responses.

	Added new function Net.get_asn_http() and migrated code from
Net.lookup_asn() + new tests.

	Fixed bug in ASN HTTP fallback lookups for DNIC (#108).

	Added new parameter extra_org_map in Net.get_asn_http(), Net.lookup_asn(),
and IPWhois.lookup*() (#108).

	Fixed _RDAPCommon.summarize_notices() None check - changed len() to all().

	Added CLI (ipwhois_cli.py) - #46. Installed to your environments Scripts dir.
This is a wrapper for ipwhois.py (IPWhois). Utils CLI will be in a future
release (#121).

	Documentation split up and added more detail (#81).

0.12.0 (2016-03-28)

	Added headers parameter to ipwhois.Net.get_http_json() (issue #98).

	Fixed ASN HTTP lookup (fallback) Accept headers (issue #98).

	Fixed HTTP decoding, set to utf-8 (italomaia - issue #97)

	IPWhois.lookup() deprecated (issue #96), and will be removed in a future
release (TBD). Use IPWhois.lookup_whois() instead.

	Added rate_limit_timeout parameter (issue #99) to Net.get_http_json(),
IPWhois.lookup_rdap(), and RDAP.lookup(). New exception HTTPRateLimitError.

	Added new parameter asn_alts to Net.lookup_asn(), IPWhois.lookup_rdap() and
IPWhois.lookup(). Takes a list of lookup types to attempt if the
ASN dns lookup fails. Allow permutations must be enabled. Defaults to all
[‘whois’, ‘http’] (issue #93).

	Fixed socket exception handling in Net.get_http_json() for Python 2.6.

	Fixed assertIsInstance for Python 2.6 tests (issue #100). Implemented
unittest._formatMessage and unittest.util.safe_repr for Python 2.6.

	Moved TestCommon to tests__init__.py to avoid duplicate code.

	Replaced remaining % with str.format (issue #95).

0.11.2 (2016-02-25)

	Added allow_permutations parameter (bool) to net.Net() and ipwhois.IPWhois()
to allow alternate ASN lookups if DNS lookups fail. (FirefighterBlu3)

	Fixed ASN DNS resolver timeout/retry_count support. Retry count is used as a
multiplier of timeout, to determine a limetime interval. (FirefighterBlu3)

	Fixed bug where remarks would return None if missing a title.

	Added CONTRIBUTING.rst

	Added tests

0.11.1 (2015-12-17)

	Re-added CIDR calculation for RDAP lookups.

	Improved tests - core code coverage now 100%. See ‘# pragma: no cover’ for
exclusions. A few bugs were identified in the process, detailed below.

	Moved IP zero stripping from rdap._RDAPNetwork.parse() to new helper function
utils.ipv4_lstrip_zeros().

	Moved CIDR calculation from rdap._RDAPNetwork.parse() to new helper function
utils.calculate_cidr().

	Fixed utils.ipv4_is_defined() if statement ordering for RFC 1918 conflict.

	Fixed utils.ipv6_is_defined() if statement ordering for Unspecified and
Loopback (conflict with Reserved).

	Added is_offline parameter to whois.Whois.lookup() primarily for testing.

	Fixed bug in whois.Whois._parse_fields() that attempted to parse ‘val2’ of
regex, which is no longer used. Also fixed the expected Exception to be
IndexError.

	Fixed bug in ipwhois.IPWhois.lookup() where the argument order was mixed up,
causing referral lookups to be skipped when get_referral=True.

	Fixed bug in rdap._RDAPCommon.summarize_notices() output for links.

	Fixed bug in root entity iteration exception handling in rdap.RDAP.lookup().

0.11.0 (2015-11-02)

	Support for REST lookups replaced with RDAP.

	Split code for a more structured system (net, whois, rdap, exceptions).

	Tests match the data new structure.

	Split tests for online and offline testing.

	Performance enhancements for parsing.

	Added an optional bootstrap parameter for RDAP lookups, in order to replace
ASN lookups or use both. Will default to False. Afrinic is currently not
supported, so I would not use this for now. ARIN acknowledged my issue
for this, and will be adding support back in for Afrinic bootstrap.

	Added field_list parameter (inclusion list) for WHOIS lookups.

	Added logging.

	Added examples directory.

0.10.3 (2015-08-14)

	Fixed LACNIC lookup_rws() queries, since they switched to RDAP. This is
temporary to get it working until the major library transition to RDAP and
new parsed formatting is complete.

0.10.2 (2015-05-19)

	Fixed APNIC parsing for updated field.

	Fixed datetime parsing and validation when Zulu (Z) is appended.

	Added RIPE parsing for created and updated fields (whois and RWS).

	Removed unnecessary parentheses in IPWhois class declaration.

	Some documentation and comment tweaking to work with Sphinx.

	Minor PEP 8 tweaks.

0.10.1 (2015-02-09)

	Fixed setup.py bug.

0.10.0 (2015-02-09)

	Added .csv support for country code source. You can no longer download
country code information from iso.org.

	Added support for IPv4Address or IPv6Address as the address arg in IPWhois.

	Fixed file open encoding bug. Moved from open to io.open.

	Fixed parameter in IPWhois ip defined checks.

	Fixed TestIPWhois.test_ip_invalid() assertions.

Changelog (Archive)

0.9.1 (2014-10-14)

	Added ignore_referral_errors parameter to lookup().

	Fixed ipaddress import conflicts with alternate ipaddress module.

	Tuned import exception in ipwhois.utils.

	Fixed retry handling in get_whois().

	Fixed CIDR regex parsing bug where some nets were excluded from the results.

0.9.0 (2014-07-27)

	Fixed order on REST email fields

	Fixed setup error for initial install when dependencies don’t exist.

	Added RWhois support.

	Added server and port parameters to IPWhois.get_whois().

	Added unique_addresses() to ipwhois.utils and unit tests.

	Added some unit tests to test_lookup().

	Replaced dict.copy() with copy.deepcopy(dict).

	Fixed bug in abuse emails parsing.

	Added handle and range values to returned nets dictionary.

0.8.2 (2014-05-12)

	Fixed multi-line field parsing (Issue #36).

	Added unique_everseen() to ipwhois.utils to fix multi-line field order.

	Re-added support for RIPE RWS now that their API is fixed.

0.8.1 (2014-03-05)

	Fixed encoding error in IPWhois.get_whois().

0.8.0 (2014-02-18)

	Added ASNRegistryError to handle unknown ASN registry return values.

	Added ASN registry lookup third tier fallback to ARIN.

	Fixed variable naming to avoid shadows built-in confusion.

	Fixed some type errors: Expected

 Upgrade Notes

Upgrade Notes

Version upgrade notes, warnings, and critical changes will be displayed here.
This does not supplement the changelog, but serves to provide information on
any changes that may affect user experience when upgrading to a new release.

This page is new as of version 1.0.0. Any information on older versions is
likely missing or incomplete.

v1.0.0

	Removed deprecated IPWhois.lookup() - This was moved to
IPWhois.lookup_whois()

	HTTPS (port 443) requirement added for KRNIC lookups.

	Experimental bulk functions added: experimental.get_bulk_asn_whois and
experimental.bulk_lookup_rdap.

	Added new return key asn_description to net.Net.get_asn_whois,
experimental.get_bulk_asn_whois, and hr.py. New argument get_asn_description
to disable additional DNS lookups added to CLI.

	The IPWhois argument allow_permutations and the lookup argument asn_alts
have been deprecated in favor of new argument asn_methods.

	Deprecated unnecessary protected class functions, changed to public in
asn.py, nir.py, and whois.py (#184): asn.IPASN._parse_fields_dns,
asn.IPASN._parse_fields_whois, asn.IPASN._parse_fields_http,
asn.ASNOrigin._parse_fields, asn.ASNOrigin._get_nets_radb,
nir.NIRWhois._parse_fields, nir.NIRWhois._get_nets_jpnic,
nir.NIRWhois._get_nets_krnic, nir.NIRWhois._get_contact,
whois.Whois._parse_fields, whois.Whois._get_nets_arin,
whois.Whois._get_nets_lacnic, whois.Whois._get_nets_other

	New IP generators added: utils.ipv4_generate_random and
utils.ipv6_generate_random

	net.Net.get_host(), utils.ipv4_is_defined(), and utils.ipv6_is_defined now
return namedtuple instead of tuple.

	net.Net.get_asn_dns now returns a list rather than a str

v0.14.0

	NIR (National Internet Registry) lookups are enabled by default. This is
currently only performed for JPNIC and KRNIC addresses. To disable,
set inc_nir=False in your IPWhois.lookup_*() query.

	The ‘nets’ -> ‘emails’ key in IPWhois.lookup_whois() was changed from a
‘\n’ separated string to a list.

v0.11.0

	The new RDAP return format was introduced and split off from the legacy
whois return format. Using RDAP lookup (IPWhois.lookup_rdap()) is now the
recommended method to maximize indexable values. RDAP return data is
different in nearly every way from the legacy whois data. For information on
raw RDAP responses, please see the RFC: https://tools.ietf.org/html/rfc7483

 RDAP (HTTP) Lookups

RDAP (HTTP) Lookups

IPWhois.lookup_rdap() is now the recommended lookup method. RDAP provides a
far better data structure than legacy whois and REST lookups (previous
implementation). RDAP queries allow for parsing of contact information and
details for users, organizations, and groups. RDAP also provides more detailed
network information.

Input

Arguments supported by IPWhois.lookup_rdap().

	Key
	Type
	Description

	inc_raw
	bool
	Whether to include the raw whois results in
the returned dictionary. Defaults to False.

	retry_count
	int
	The number of times to retry in case socket
errors, timeouts, connection resets, etc. are
encountered. Defaults to 3.

	depth
	int
	How many levels deep to run queries when
additional referenced objects are found.
Defaults to 0.

	excluded_entities
	list
	Entity handles to not perform lookups.
Defaults to None.

	bootstrap
	bool
	If True, performs lookups via ARIN bootstrap
rather than lookups based on ASN data. ASN
lookups are not performed and no output for
any of the asn* fields is provided. Defaults
to False.

	rate_limit_timeout
	int
	The number of seconds to wait before retrying
when a rate limit notice is returned via
rdap+json. Defaults to 120.

	asn_alts
	list
	Additional lookup types to attempt if the ASN
dns lookup fails. Allow permutations must be
enabled. If None, defaults to all
[‘whois’, ‘http’]. WARNING deprecated in
favor of new argument asn_methods.

	extra_org_map
	dict
	Dictionary mapping org handles to RIRs.
This is for limited cases where ARIN REST
(ASN fallback HTTP lookup) does not show an
RIR as the org handle e.g., DNIC (which
is now built in ORG_MAP)
e.g., {‘DNIC’: ‘arin’}. Valid RIR
values are (note the case-sensitive - this is
meant to match the REST result):
‘ARIN’, ‘RIPE’, ‘apnic’, ‘lacnic’, ‘afrinic’
Defaults to None.

	inc_nir
	bool
	Whether to retrieve NIR (National Internet
Registry) information, if registry is JPNIC
(Japan) or KRNIC (Korea). If True, extra
network requests will be required. If False,
the information returned for JP or KR IPs is
severely restricted. Defaults to True.

	nir_field_list
	list
	If provided and inc_nir, a list of
fields to parse: [‘name’, ‘handle’, ‘country’,
‘address’, ‘postal_code’, ‘nameservers’,
‘created’, ‘updated’, ‘contacts’]
If None, defaults to all.

	asn_methods
	list
	ASN lookup types to attempt, in order. If
None, defaults to all [‘dns’, ‘whois’, ‘http’]

	get_asn_description
	bool
	Whether to run an additional query when
pulling ASN information via dns, in order to
get the ASN description. Defaults to True.

Output

Results Dictionary

The output dictionary from IPWhois.lookup_rdap(). Contains many nested lists
and dictionaries, detailed below this section.

	Key
	Type
	Description

	query
	str
	The IP address

	asn
	str
	Globally unique identifier used for routing
information exchange with Autonomous Systems.

	asn_cidr
	str
	Network routing block assigned to an ASN.

	asn_country_code
	str
	ASN assigned country code in ISO 3166-1 format.

	asn_date
	str
	ASN allocation date in ISO 8601 format.

	asn_registry
	str
	ASN assigned regional internet registry.

	asn_description
	str
	The ASN description

	network
	dict
	The assigned network for an IP address. May be
a parent or child network. See
Network Dictionary.

	entities
	list
	list of object names referenced by an RIR
network. Map these to the objects dict keys.

	objects
	dict
	The objects (entities) referenced by an RIR
network or by other entities (depending on
depth parameter). Keys are the object names
with values as
Objects Dictionary.

	raw
	dict
	The raw results dictionary (JSON) if
inc_raw is True.

	nir
	dict
	The National Internet Registry results if
inc_nir is True. See NIR result [https://ipwhois.readthedocs.io/en/latest/NIR.html#results-dictionary]

Network Dictionary

The dictionary mapped to the network key in the objects list within
Results Dictionary.

	Key
	Type
	Description

	cidr
	str
	Network routing block an IP address belongs to.

	country
	str
	Country code registered with the RIR in
ISO 3166-1 format.

	end_address
	str
	The last IP address in a network block.

	events
	list
	List of event dictionaries. See
Events Dictionary.

	handle
	str
	Unique identifier for a registered object.

	ip_version
	str
	IP protocol version (v4 or v6) of an IP address.

	links
	list
	HTTP/HTTPS links provided for an RIR object.

	name
	str
	The identifier assigned to the network
registration for an IP address.

	notices
	list
	List of notice dictionaries. See
Notices Dictionary.

	parent_handle
	str
	Unique identifier for the parent network of a
registered network.

	remarks
	list
	List of remark (notice) dictionaries. See
Notices Dictionary.

	start_address
	str
	The first IP address in a network block.

	status
	list
	List indicating the state of a registered object.

	type
	str
	The RIR classification of a registered network.

Objects Dictionary

The dictionary mapped to the object (entity) key in the objects list within
Results Dictionary.

	Key
	Type
	Description

	contact
	dict
	Contact information registered with an RIR object.
See
Objects Contact Dictionary.

	entities
	list
	List of object names referenced by an RIR object.
Map these to other objects dictionary keys.

	events
	list
	List of event dictionaries. See
Events Dictionary.

	events_actor
	list
	List of event (no actor) dictionaries. See
Events Dictionary.

	handle
	str
	Unique identifier for a registered object.

	links
	list
	List of HTTP/HTTPS links provided for an RIR object.

	notices
	list
	List of notice dictionaries. See
Notices Dictionary.

	remarks
	list
	List of remark (notice) dictionaries. See
Notices Dictionary.

	roles
	list
	List of roles assigned to a registered object.

	status
	list
	List indicating the state of a registered object.

Objects Contact Dictionary

The contact information dictionary registered to an RIR object. This is the
contact key contained in Objects Dictionary.

	Key
	Type
	Description

	address
	list
	List of contact postal address dictionaries. Contains key
type and value.

	email
	list
	List of contact email address dictionaries. Contains key
type and value.

	kind
	str
	The contact information kind (individual, group, org).

	name
	str
	The contact name.

	phone
	list
	List of contact phone number dictionaries. Contains key
type and value.

	role
	str
	The contact’s role.

	title
	str
	The contact’s position or job title.

Events Dictionary

Common to lists in Network Dictionary and
Objects Dictionary.
Contained in events and events_actor (no actor).

	Key
	Type
	Description

	action
	str
	The reason for an event.

	timestamp
	str
	The date an event occured in ISO 8601 format.

	actor
	str
	The identifier for an event initiator (if any).

Notices Dictionary

Common to lists in Network Dictionary and
Objects Dictionary. Contained in notices and remarks.

	Key
	Type
	Description

	title
	str
	The title/header for a notice.

	description
	str
	The description/body of a notice.

	links
	list
	list of HTTP/HTTPS links provided for a notice.

Usage Examples

Basic usage

>>>> from ipwhois import IPWhois
>>>> from pprint import pprint

>>>> obj = IPWhois('74.125.225.229')
>>>> results = obj.lookup_rdap(depth=1)
>>>> pprint(results)

{
"asn": "15169",
"asn_cidr": "74.125.225.0/24",
"asn_country_code": "US",
"asn_date": "2007-03-13",
"asn_description": "GOOGLE - Google Inc., US",
"asn_registry": "arin",
"entities": [
 "GOGL"
],
"network": {
 "cidr": "74.125.0.0/16",
 "country": None,
 "end_address": "74.125.255.255",
 "events": [
 {
 "action": "last changed",
 "actor": None,
 "timestamp": "2012-02-24T09:44:34-05:00"
 },
 {
 "action": "registration",
 "actor": None,
 "timestamp": "2007-03-13T12:09:54-04:00"
 }
],
 "handle": "NET-74-125-0-0-1",
 "ip_version": "v4",
 "links": [
 "https://rdap.arin.net/registry/ip/074.125.000.000",
 "https://whois.arin.net/rest/net/NET-74-125-0-0-1"
],
 "name": "GOOGLE",
 "notices": [
 {
 "description": "By using the ARIN RDAP/Whois service, you are agreeing to the RDAP/Whois Terms of Use",
 "links": [
 "https://www.arin.net/whois_tou.html"
],
 "title": "Terms of Service"
 }
],
 "parent_handle": "NET-74-0-0-0-0",
 "raw": None,
 "remarks": None,
 "start_address": "74.125.0.0",
 "status": None,
 "type": None
},
"nir": None,
"objects": {
 "ABUSE5250-ARIN": {
 "contact": {
 "address": [
 {
 "type": None,
 "value": "1600 Amphitheatre Parkway\nMountain View\nCA\n94043\nUNITED STATES"
 }
],
 "email": [
 {
 "type": None,
 "value": "network-abuse@google.com"
 }
],
 "kind": "group",
 "name": "Abuse",
 "phone": [
 {
 "type": [
 "work",
 "voice"
],
 "value": "+1-650-253-0000"
 }
],
 "role": None,
 "title": None
 },
 "entities": None,
 "events": [
 {
 "action": "last changed",
 "actor": None,
 "timestamp": "2016-11-08T14:12:52-05:00"
 },
 {
 "action": "registration",
 "actor": None,
 "timestamp": "2015-11-06T15:36:35-05:00"
 }
],
 "events_actor": None,
 "handle": "ABUSE5250-ARIN",
 "links": [
 "https://rdap.arin.net/registry/entity/ABUSE5250-ARIN",
 "https://whois.arin.net/rest/poc/ABUSE5250-ARIN"
],
 "notices": [
 {
 "description": "By using the ARIN RDAP/Whois service, you are agreeing to the RDAP/Whois Terms of Use",
 "links": [
 "https://www.arin.net/whois_tou.html"
],
 "title": "Terms of Service"
 }
],
 "raw": None,
 "remarks": [
 {
 "description": "Please note that the recommended way to file abuse complaints are located in the following links.\r\n\r\nTo report abuse and illegal activity: https://www.google.com/intl/en_US/goodtoknow/online-safety/reporting-abuse/ \r\n\r\nFor legal requests: http://support.google.com/legal \r\n\r\nRegards,\r\nThe Google Team",
 "links": None,
 "title": "Registration Comments"
 }
],
 "roles": [
 "abuse"
],
 "status": [
 "validated"
]
 },
 "GOGL": {
 "contact": {
 "address": [
 {
 "type": None,
 "value": "1600 Amphitheatre Parkway\nMountain View\nCA\n94043\nUNITED STATES"
 }
],
 "email": None,
 "kind": "org",
 "name": "Google Inc.",
 "phone": None,
 "role": None,
 "title": None
 },
 "entities": [
 "ABUSE5250-ARIN",
 "ZG39-ARIN"
],
 "events": [
 {
 "action": "last changed",
 "actor": None,
 "timestamp": "2017-01-28T08:32:29-05:00"
 },
 {
 "action": "registration",
 "actor": None,
 "timestamp": "2000-03-30T00:00:00-05:00"
 }
],
 "events_actor": None,
 "handle": "GOGL",
 "links": [
 "https://rdap.arin.net/registry/entity/GOGL",
 "https://whois.arin.net/rest/org/GOGL"
],
 "notices": None,
 "raw": None,
 "remarks": None,
 "roles": [
 "registrant"
],
 "status": None
 },
 "ZG39-ARIN": {
 "contact": {
 "address": [
 {
 "type": None,
 "value": "1600 Amphitheatre Parkway\nMountain View\nCA\n94043\nUNITED STATES"
 }
],
 "email": [
 {
 "type": None,
 "value": "arin-contact@google.com"
 }
],
 "kind": "group",
 "name": "Google Inc",
 "phone": [
 {
 "type": [
 "work",
 "voice"
],
 "value": "+1-650-253-0000"
 }
],
 "role": None,
 "title": None
 },
 "entities": None,
 "events": [
 {
 "action": "last changed",
 "actor": None,
 "timestamp": "2017-03-13T07:08:09-04:00"
 },
 {
 "action": "registration",
 "actor": None,
 "timestamp": "2000-11-30T13:54:08-05:00"
 }
],
 "events_actor": None,
 "handle": "ZG39-ARIN",
 "links": [
 "https://rdap.arin.net/registry/entity/ZG39-ARIN",
 "https://whois.arin.net/rest/poc/ZG39-ARIN"
],
 "notices": [
 {
 "description": "By using the ARIN RDAP/Whois service, you are agreeing to the RDAP/Whois Terms of Use",
 "links": [
 "https://www.arin.net/whois_tou.html"
],
 "title": "Terms of Service"
 }
],
 "raw": None,
 "remarks": None,
 "roles": [
 "administrative",
 "technical"
],
 "status": [
 "validated"
]
 }
},
"query": "74.125.225.229",
"raw": None
}

Use a proxy

>>>> from urllib import request
>>>> from ipwhois import IPWhois
>>>> handler = request.ProxyHandler({
 'http': 'http://192.168.0.1:80/',
 'https': 'https://192.168.0.1:443/'
 })
>>>> opener = request.build_opener(handler)
>>>> obj = IPWhois('74.125.225.229', proxy_opener = opener)

Optimizing queries for your network

Multiple factors will slow your queries down. Several Input
arguments assist in optimizing query performance:

bootstrap

False: ASN lookups are performed to determine the correct RIR to query
RDAP. This adds minor overhead for single queries.

True: Use ARIN bootstrap (redirection), significantly reducing overall time
for bulk queries, but at the sacrifice of not having asn* field data in the
results.

depth

This value equates to the number of entity levels deep to search for sub-entity
information. Found entities each result in a query to the RIR. The larger this
value, the longer a single IP query will take. More queries will cause RIR rate
limiting to trigger more often for bulk IP queries (only seen with LACNIC).

retry_count

This is the number of times to retry a query in the case of failure. If a
rate limit error (HTTPRateLimitError) is raised, the lookup will wait for
rate_limit_timeout seconds before retrying. A combination of adjusting
retry_count and rate_limit_timeout is needed to optimize bulk queries.

rate_limit_timeout

When a HTTPRateLimitError is raised, and retry_count > 0, this is the amount of
seconds to sleep before retrying the query. Using the default value, or setting
this too high, will have a large impact on bulk IP queries. I recommend setting
this very low for bulk queries, or disable completely by setting retry_count=0.

Note that setting this result too low may cause a larger number of IP lookups
to fail.

 Legacy Whois Lookups

Legacy Whois Lookups

IPWhois.lookup() is deprecated as of v0.12.0 and will be removed. Legacy whois
lookups were moved to IPWhois.lookup_whois().

Parsing is currently limited to the keys in the output
Results Dictionary.
This is assuming that those fields are present (for both whois and rwhois).

Some IPs have parent networks listed. The parser attempts to recognize this,
and break the networks into individual dictionaries. If a single network has
multiple CIDRs, they will be separated by ‘, ‘.

Sometimes, you will see whois information with multiple consecutive same name
fields, e.g., Description: some text\nDescription: more text. The parser will
recognize this and the returned result will have the values separated by ‘\n’.

Input

Arguments supported by IPWhois.lookup_whois().

	Key
	Type
	Description

	inc_raw
	bool
	Whether to include the raw whois results
in the returned dictionary. Defaults to
False.

	retry_count
	int
	The number of times to retry in case
socket errors, timeouts, connection
resets, etc. are encountered.
Defaults to 3.

	get_referral
	bool
	Whether to retrieve referral whois
information, if available. Defaults to
False.

	extra_blacklist
	list
	Blacklisted whois servers in addition to
the global BLACKLIST. Defaults to None.

	ignore_referral_errors
	bool
	Whether to ignore and continue when an
exception is encountered on referral whois
lookups. Defaults to False.

	field_list
	list
	If provided, a list of fields to parse:
[‘name’, ‘handle’, ‘description’,
‘country’, ‘state’, ‘city’, ‘address’,
‘postal_code’, ‘emails’, ‘created’,
‘updated’]. If None, defaults to all.

	asn_alts
	list
	Additional lookup types to attempt if the
ASN dns lookup fails. Allow permutations
must be enabled. If None, defaults to all
[‘whois’, ‘http’]. WARNING deprecated
in favor of new argument asn_methods.

	extra_org_map
	dict
	Dictionary mapping org handles to RIRs.
This is for limited cases where ARIN
REST (ASN fallback HTTP lookup) does not
show an RIR as the org handle e.g., DNIC
(which is now built in ORG_MAP)
e.g., {‘DNIC’: ‘arin’}
Valid RIR values are (note the
case-sensitive - this is meant to match
the REST result): ‘ARIN’, ‘RIPE’,
‘apnic’, ‘lacnic’, ‘afrinic’
Defaults to None.

	inc_nir
	bool
	Whether to retrieve NIR (National Internet
Registry) information, if registry is
JPNIC (Japan) or KRNIC (Korea). If True,
extra network requests will be required.
If False, the information returned for JP
or KR IPs is severely restricted.
Defaults to True.

	nir_field_list
	list
	If provided and inc_nir, a list of fields
to parse: [‘name’, ‘handle’, ‘country’,
‘address’, ‘postal_code’, ‘nameservers’,
‘created’, ‘updated’, ‘contacts’]
If None, defaults to all.

	asn_methods
	list
	ASN lookup types to attempt, in order. If
None, defaults to all [‘dns’, ‘whois’,
‘http’].

	get_asn_description
	bool
	Whether to run an additional query when
pulling ASN information via dns, in order
to get the ASN description. Defaults to
True.

Output

Results Dictionary

The output dictionary from IPWhois.lookup_whois().

	Key
	Type
	Description

	query
	str
	The IP address input

	asn
	str
	Globally unique identifier used for routing
information exchange with Autonomous Systems.

	asn_cidr
	str
	Network routing block assigned to an ASN.

	asn_country_code
	str
	ASN assigned country code in ISO 3166-1 format.

	asn_date
	str
	ASN allocation date in ISO 8601 format.

	asn_registry
	str
	ASN assigned regional internet registry.

	asn_description
	str
	The ASN description

	nets
	list
	List of network dictionaries.
See Network Dictionary.

	raw
	str
	Raw whois results if inc_raw is True.

	referral
	dict
	Referral whois information if get_referral
is True and the server isn’t blacklisted. See
Referral Dictionary.

	raw_referral
	str
	Raw referral whois results if the inc_raw
parameter is True.

	nir
	dict
	The National Internet Registry results if
inc_nir is True. See NIR result [https://ipwhois.readthedocs.io/en/latest/NIR.html#results-dictionary]

Network Dictionary

The dictionary mapped to the nets key in the
Results Dictionary.

	Key
	Type
	Description

	cidr
	str
	Network routing block an IP address belongs to.

	range
	str
	Network range an IP address belongs to.

	name
	str
	The identifier assigned to the network registration
for an IP address.

	handle
	str
	Unique identifier for a registered network.

	description
	str
	Description for a registered network.

	country
	str
	Country code registered with the RIR in
ISO 3166-1 format.

	state
	str
	State for a registered network (if applicable).

	city
	str
	City for a registered network (if applicable).

	address
	str
	The mailing address for a registered network.

	postal_code
	str
	The postal code for a registered network.

	emails
	list
	The email addresses listed for a registered network.

	created
	str
	Network registration date in ISO 8601 format.

	updated
	str
	Network registration updated date in ISO 8601 format.

Referral Dictionary

The dictionary mapped to the referral key in the
Results Dictionary.

	Key
	Type
	Description

	cidr
	str
	Network routing block an IP address belongs to.

	range
	str
	Network range an IP address belongs to.

	name
	str
	The identifier assigned to the network registration
for an IP address.

	description
	str
	Description for a registered network.

	country
	str
	Country code registered in ISO 3166-1 format.

	state
	str
	State for a registered network (if applicable).

	city
	str
	City for a registered network (if applicable).

	address
	str
	The mailing address for a registered network.

	postal_code
	str
	The postal code for a registered network.

	emails
	list
	The email addresses listed for a registered network.

	created
	str
	Network registration date in ISO 8601 format.

	updated
	str
	Network registration updated date in ISO 8601 format.

Usage Examples

Basic usage

>>>> from ipwhois import IPWhois
>>>> from pprint import pprint

>>>> obj = IPWhois('74.125.225.229')
>>>> results = obj.lookup_whois()
>>>> pprint(results)

{
"asn": "15169",
"asn_cidr": "74.125.225.0/24",
"asn_country_code": "US",
"asn_date": "2007-03-13",
"asn_description": "GOOGLE - Google Inc., US",
"asn_registry": "arin",
"nets": [
 {
 "address": "1600 Amphitheatre Parkway",
 "cidr": "74.125.0.0/16",
 "city": "Mountain View",
 "country": "US",
 "created": "2007-03-13",
 "description": "Google Inc.",
 "emails": [
 "network-abuse@google.com",
 "arin-contact@google.com"
],
 "handle": "NET-74-125-0-0-1",
 "name": "GOOGLE",
 "postal_code": "94043",
 "range": "74.125.0.0 - 74.125.255.255",
 "state": "CA",
 "updated": "2012-02-24"
 }
],
"nir": None,
"query": "74.125.225.229",
"raw": None,
"raw_referral": None,
"referral": None
}

Multiple networks listed and referral whois

>>>> from ipwhois import IPWhois
>>>> from pprint import pprint

>>>> obj = IPWhois('38.113.198.252')
>>>> results = obj.lookup_whois(get_referral=True)
>>>> pprint(results)

{
"asn": "174",
"asn_cidr": "38.0.0.0/8",
"asn_country_code": "US",
"asn_date": "",
"asn_description": "COGENT-174 - Cogent Communications, US",
"asn_registry": "arin",
"nets": [
 {
 "address": "2450 N Street NW",
 "cidr": "38.0.0.0/8",
 "city": "Washington",
 "country": "US",
 "created": "1991-04-16",
 "description": "PSINet, Inc.",
 "emails": [
 "ipalloc@cogentco.com",
 "abuse@cogentco.com",
 "noc@cogentco.com"
],
 "handle": "NET-38-0-0-0-1",
 "name": "COGENT-A",
 "postal_code": "20037",
 "range": "38.0.0.0 - 38.255.255.255",
 "state": "DC",
 "updated": "2011-05-20"
 },
 {
 "address": "2450 N Street NW",
 "cidr": "38.112.0.0/13",
 "city": "Washington",
 "country": "US",
 "created": "2003-08-20",
 "description": "PSINet, Inc.",
 "emails": [
 "ipalloc@cogentco.com",
 "abuse@cogentco.com",
 "noc@cogentco.com"
],
 "handle": "NET-38-112-0-0-1",
 "name": "COGENT-NB-0002",
 "postal_code": "20037",
 "range": None,
 "state": "DC",
 "updated": "2004-03-11"
 }
],
"nir": None,
"query": "38.113.198.252",
"raw": None,
"raw_referral": None,
"referral": {
 "address": "2450 N Street NW",
 "city": "Washington",
 "country": "US",
 "description": "Cogent communications - IPENG",
 "name": "NET4-2671C60017",
 "postal_code": "20037",
 "state": "DC",
 "updated": "2007-09-18 22:02:09"
}
}

 NIR (National Internet Registry)

NIR (National Internet Registry)

IPWhois.nir provides functionality for national registries which restrict
information on regional registries. Currently, JPNIC (Japan) and KRNIC
(South Korea) are supported.

Input (IPWhois Wrapper)

NIR is included by default (inc_nir=True) in the wrapper functions:
IPWhois.lookup(), IPWhois.lookup_rdap(). For use with the wrappers, see the
following input documentation links:

RDAP documentation:

https://ipwhois.readthedocs.io/en/latest/RDAP.html#input

Legacy Whois documentation:

https://ipwhois.readthedocs.io/en/latest/WHOIS.html#input

Input (Direct)

If you prefer to use NIRWhois(net).lookup() directly, here are the input
arguments for that function call:

	Key
	Type
	Description

	nir
	str
	The NIR to query (‘jpnic’ or ‘krnic’).

	inc_raw
	bool
	Whether to include the raw whois results in
the returned dictionary. Defaults to False.

	retry_count
	int
	The number of times to retry in case socket errors,
timeouts, connection resets, etc. are encountered.
Defaults to 3.

	response
	str
	Optional response object, this bypasses the NIR
lookup.

	field_list
	list
	If provided, a list of fields to parse:
[‘name’, ‘handle’, ‘country’, ‘address’,
‘postal_code’, ‘nameservers’, ‘created’,
‘updated’, ‘contacts’]. If None, defaults to all.

	is_offline
	bool
	Whether to perform lookups offline.
If True, response and asn_data must be provided.
Primarily used for testing. Defaults to False.

Output

If calling via an IPWhois wrapper, the NIR results are added to the RDAP/WHOIS
result dictionary under the key ‘nir’.

Results Dictionary

The NIR output dictionary (key: nir) from IPWhois.lookup() or
IPWhois.lookup_whois() results.

	Key
	Type
	Description

	query
	str
	The IP address input

	nets
	list
	List of network dictionaries.
See Network Dictionary.

	raw
	str
	Raw NIR whois results if inc_raw is True.

Network Dictionary

The dictionary mapped to the nets key in the
Results Dictionary.

	Key
	Type
	Description

	cidr
	str
	Network routing block an IP address belongs to.

	range
	str
	Network range an IP address belongs to.

	name
	str
	The identifier assigned to the network registration
for an IP address.

	handle
	str
	Unique identifier for a registered network.

	country
	str
	Country code registered with the NIR in ISO 3166-1
format.

	address
	str
	The mailing address for a registered network.

	postal_code
	str
	The postal code for a registered network.

	nameservers
	list
	The nameservers listed for a registered network.

	created
	str
	Network registration date in ISO 8601 format.

	updated
	str
	Network registration updated date in ISO 8601 format.

	contacts
	dict
	Dictionary with keys: admin, tech. Values map to
contact dictionaries if found. See
Contact Dictionary.

Contact Dictionary

The contact information dictionary registered to a NIR network object. This is
‘contacts’ -> ‘admin’/’tech’ key in
Network Dictionary.

	Key
	Type
	Description

	name
	str
	The contact’s name.

	organization
	str
	The contact’s organization.

	division
	str
	The contact’s division of the organization.

	email
	str
	Contact email address.

	reply_email
	str
	Contact reply email address.

	updated
	str
	Updated date in ISO 8601 format.

	phone
	str
	Contact phone number.

	fax
	str
	Contact fax number.

	title
	str
	The contact’s position or job title.

Usage Examples

Basic usage

inc_nir defaults to true in IPWhois.lookup_*(), but I will set it here to
show the usage and results.

>>>> from ipwhois import IPWhois
>>>> from pprint import pprint

>>>> obj = IPWhois('133.1.2.5')
>>>> results = obj.lookup_whois(inc_nir=True)
>>>> pprint(results)

{
"asn": "4730",
"asn_cidr": "133.1.0.0/16",
"asn_country_code": "JP",
"asn_date": "",
"asn_description": "ODINS Osaka University, JP",
"asn_registry": "apnic",
"nets": [
 {
 "address": "Urbannet-Kanda Bldg 4F\n3-6-2 Uchi-Kanda\nChiyoda-ku, Tokyo 101-0047,Japan",
 "cidr": "133.0.0.0/8",
 "city": None,
 "country": "JP",
 "created": None,
 "description": "Japan Network Information Center",
 "emails": [
 "hm-changed@apnic.net",
 "hostmaster@nic.ad.jp",
 "ip-apnic@nic.ad.jp"
],
 "handle": "JNIC1-AP",
 "name": "JPNIC-NET-JP-ERX",
 "postal_code": None,
 "range": "133.0.0.0 - 133.255.255.255",
 "state": None,
 "updated": "20120828"
 }
],
"nir": {
 "nets": [
 {
 "address": None,
 "cidr": "133.1.0.0/16",
 "contacts": {
 "admin": {
 "division": "Department of Information and Communications Technology Services",
 "email": "odins-room@odins.osaka-u.ac.jp",
 "fax": "06-6879-8988",
 "name": "Yoshihide, Minami",
 "organization": "Osaka University",
 "phone": "06-6879-8815",
 "reply_email": "reg@jpdirect.jp",
 "title": "Specialist",
 "updated": "2015-08-13T09:08:34"
 },
 "tech": {
 "division": "Department of Information and Communications Technology Services",
 "email": "odins-room@odins.osaka-u.ac.jp",
 "fax": "06-6879-8988",
 "name": "Yoshihide, Minami",
 "organization": "Osaka University",
 "phone": "06-6879-8815",
 "reply_email": "reg@jpdirect.jp",
 "title": "Specialist",
 "updated": "2015-08-13T09:08:34"
 }
 },
 "country": "JP",
 "created": None,
 "handle": "OSAKAU-NET",
 "name": "Osaka University",
 "nameservers": [
 "a.osaka-u.ac.jp",
 "b.osaka-u.ac.jp",
 "dns-x.sinet.ad.jp"
],
 "postal_code": None,
 "range": "133.1.0.1 - 133.1.255.255",
 "updated": "2015-01-14T02:50:03"
 }
],
 "query": "133.1.2.5",
 "raw": None
},
"query": "133.1.2.5",
"raw": None,
"raw_referral": None,
"referral": None
}

>>>> results = obj.lookup_rdap(depth=1, inc_nir=True)
>>>> pprint(results)

{
"asn": "4730",
"asn_cidr": "133.1.0.0/16",
"asn_country_code": "JP",
"asn_date": "",
"asn_description": "ODINS Osaka University, JP",
"asn_registry": "apnic",
"entities": [
 "JNIC1-AP"
],
"network": {
 "cidr": "133.0.0.0/8",
 "country": "JP",
 "end_address": "133.255.255.255",
 "events": [
 {
 "action": "last changed",
 "actor": None,
 "timestamp": "2009-10-30T00:51:09Z"
 }
],
 "handle": "133.0.0.0 - 133.255.255.255",
 "ip_version": "v4",
 "links": [
 "http://rdap.apnic.net/ip/133.0.0.0/8"
],
 "name": "JPNIC-NET-JP-ERX",
 "notices": [
 {
 "description": "Objects returned came from source\nAPNIC",
 "links": None,
 "title": "Source"
 },
 {
 "description": "This is the APNIC WHOIS Database query service. The objects are in RDAP format.",
 "links": [
 "http://www.apnic.net/db/dbcopyright.html"
],
 "title": "Terms and Conditions"
 }
],
 "parent_handle": None,
 "raw": None,
 "remarks": [
 {
 "description": "Japan Network Information Center",
 "links": None,
 "title": "description"
 },
 {
 "description": "133/8 block is an ERX range which transfered from\nARIN to APNIC on 2009-10-30\nThe original allocation date was 1997-03-01\nPlease search whois.nic.ad.jp for more information\nabout this range\n% whois -h whois.nic.ad.jp ***.***.***.***/e",
 "links": None,
 "title": "remarks"
 }
],
 "start_address": "133.0.0.0",
 "status": None,
 "type": "ALLOCATED PORTABLE"
},
"nir": {
 "nets": [
 {
 "address": None,
 "cidr": "133.1.0.0/16",
 "contacts": {
 "admin": {
 "division": "Department of Information and Communications Technology Services",
 "email": "odins-room@odins.osaka-u.ac.jp",
 "fax": "06-6879-8988",
 "name": "Yoshihide, Minami",
 "organization": "Osaka University",
 "phone": "06-6879-8815",
 "reply_email": "reg@jpdirect.jp",
 "title": "Specialist",
 "updated": "2015-08-13T09:08:34"
 },
 "tech": {
 "division": "Department of Information and Communications Technology Services",
 "email": "odins-room@odins.osaka-u.ac.jp",
 "fax": "06-6879-8988",
 "name": "Yoshihide, Minami",
 "organization": "Osaka University",
 "phone": "06-6879-8815",
 "reply_email": "reg@jpdirect.jp",
 "title": "Specialist",
 "updated": "2015-08-13T09:08:34"
 }
 },
 "country": "JP",
 "created": None,
 "handle": "OSAKAU-NET",
 "name": "Osaka University",
 "nameservers": [
 "a.osaka-u.ac.jp",
 "b.osaka-u.ac.jp",
 "dns-x.sinet.ad.jp"
],
 "postal_code": None,
 "range": "133.1.0.1 - 133.1.255.255",
 "updated": "2015-01-14T02:50:03"
 }
],
 "query": "133.1.2.5",
 "raw": None
},
"objects": {
 "JNIC1-AP": {
 "contact": {
 "address": [
 {
 "type": None,
 "value": "Urbannet-Kanda Bldg 4F\n3-6-2 Uchi-Kanda\nChiyoda-ku, Tokyo 101-0047,Japan"
 }
],
 "email": [
 {
 "type": None,
 "value": "hostmaster@nic.ad.jp"
 }
],
 "kind": "group",
 "name": "Japan Network Information Center",
 "phone": [
 {
 "type": "voice",
 "value": "+81-3-5297-2311"
 },
 {
 "type": "fax",
 "value": "+81-3-5297-2312"
 }
],
 "role": None,
 "title": None
 },
 "entities": None,
 "events": None,
 "events_actor": None,
 "handle": "JNIC1-AP",
 "links": [
 "http://rdap.apnic.net/entity/JNIC1-AP"
],
 "notices": None,
 "raw": None,
 "remarks": None,
 "roles": [
 "technical",
 "administrative"
],
 "status": None
 }
},
"query": "133.1.2.5",
"raw": None
}

 IP ASN Lookups

IP ASN Lookups

This is new functionality as of v0.15.0. This functionality was migrated from
net.Net and is still used by IPWhois.lookup*().

IP ASN Input

Arguments supported by IPASN.lookup().

	Key
	Type
	Description

	inc_raw
	bool
	Whether to include the raw whois results
in the returned dictionary. Defaults to
False.

	retry_count
	int
	The number of times to retry in case
socket errors, timeouts, connection
resets, etc. are encountered.
Defaults to 3.

	asn_alts
	list
	Additional lookup types to attempt if the
ASN dns lookup fails. Allow permutations
must be enabled. If None, defaults to all
[‘whois’, ‘http’]. WARNING deprecated
in favor of new argument asn_methods.

	extra_org_map
	dict
	Dictionary mapping org handles to RIRs.
This is for limited cases where ARIN
REST (ASN fallback HTTP lookup) does not
show an RIR as the org handle e.g., DNIC
(which is now built in ORG_MAP)
e.g., {‘DNIC’: ‘arin’}
Valid RIR values are (note the
case-sensitive - this is meant to match
the REST result): ‘ARIN’, ‘RIPE’,
‘apnic’, ‘lacnic’, ‘afrinic’
Defaults to None.

	asn_methods
	list
	ASN lookup types to attempt, in order. If
None, defaults to all [‘dns’, ‘whois’,
‘http’].

	get_asn_description
	bool
	Whether to run an additional query when
pulling ASN information via dns, in order
to get the ASN description. Defaults to
True.

IP ASN Output

IP ASN Results Dictionary

The output dictionary from IPASN.lookup().

	Key
	Type
	Description

	asn
	str
	The Autonomous System Number

	asn_date
	str
	The ASN Allocation date

	asn_registry
	str
	The assigned ASN registry

	asn_cidr
	str
	The assigned ASN CIDR

	asn_country_code
	str
	The assigned ASN country code

	asn_description
	str
	The ASN description

	raw
	str
	Raw ASN results if inc_raw is True.

IP ASN Usage Examples

Basic usage

>>>> from ipwhois.net import Net
>>>> from ipwhois.asn import IPASN
>>>> from pprint import pprint

>>>> net = Net('2001:43f8:7b0::')
>>>> obj = IPASN(net)
>>>> results = obj.lookup()
>>>> pprint(results)

{
"asn": "37578",
"asn_cidr": "2001:43f8:7b0::/48",
"asn_country_code": "KE",
"asn_date": "2013-03-22",
"asn_description": "Tespok, KE",
"asn_registry": "afrinic"
}

ASN Origin Lookups

This is new functionality as of v0.15.0.

Both Whois and HTTP protocols are supported.

RADB is the only query destination at the moment.

Parsing is currently limited to the keys in the output
ASN Origin Results Dictionary.
This is assuming that those fields are present.

ASN Origin Input

Arguments supported by ASNOrigin.lookup().

	Key
	Type
	Description

	asn
	str
	The autonomous system number (ASN) to
lookup. May be in format ‘1234’/’AS1234’

	inc_raw
	bool
	Whether to include the raw whois results
in the returned dictionary. Defaults to
False.

	retry_count
	int
	The number of times to retry in case
socket errors, timeouts, connection
resets, etc. are encountered.
Defaults to 3.

	response
	str
	Optional response object, this bypasses
the Whois lookup. Defaults to None.

	field_list
	list
	If provided, fields to parse:
[‘description’, ‘maintainer’, ‘updated’,
‘source’]. If None, defaults to all.

	asn_alts
	list
	Additional lookup types to attempt if the
ASN dns lookup fails. Allow permutations
must be enabled. If None, defaults to all
[‘http’]. WARNING deprecated
in favor of new argument asn_methods.

	asn_methods
	list
	ASN lookup types to attempt, in order. If
None, defaults to all [‘whois’, ‘http’].

ASN Origin Output

ASN Origin Results Dictionary

The output dictionary from ASNOrigin.lookup().

	Key
	Type
	Description

	query
	str
	The ASN input

	nets
	list
	List of network dictionaries.
See ASN Origin Network Dictionary.

	raw
	str
	Raw ASN origin whois results if inc_raw is True.

ASN Origin Network Dictionary

The dictionary mapped to the nets key in the
ASN Origin Results Dictionary.

	Key
	Type
	Description

	cidr
	str
	Network routing block an IP address belongs to.

	description
	str
	Description for a registered network.

	maintainer
	str
	The entity that maintains this network.

	updated
	str
	Network registration updated information.

	source
	str
	The source of this network information.

ASN Origin Usage Examples

Basic usage

>>>> from ipwhois.net import Net
>>>> from ipwhois.asn import ASNOrigin
>>>> from pprint import pprint

>>>> net = Net('2001:43f8:7b0::')
>>>> obj = ASNOrigin(net)
>>>> results = obj.lookup(asn='AS37578')
>>>> pprint(results)

{
"nets": [
 {
 "cidr": "196.6.220.0/24",
 "description": "KIXP Nairobi Management Network",
 "maintainer": "TESPOK-MNT",
 "source": "AFRINIC",
 "updated": "***@isoc.org 20160720"
 },
 {
 "cidr": "2001:43f8:7b0::/48",
 "description": "KIXP Nairobi Management Network",
 "maintainer": "TESPOK-MNT",
 "source": "AFRINIC",
 "updated": "***@isoc.org 20160721"
 }
],
"query": "AS37578",
"raw": None
}

 Utilities

Utilities

Many useful utilities are provided for IP addresses outside of whois
functionality. The following utilities are used throughout the ipwhois library
for validation and parsing.

Country Codes

The legacy country code listing (iso_3166-1_list_en.xml) is no longer
available as a free export from iso.org. Support has been added for
iso_3166-1.csv, which is now the default.

Use Legacy XML File:

>>>> from ipwhois.utils import get_countries
>>>> countries = get_countries(is_legacy_xml=True)

Human Readable Fields

Human readable translations are available for all result fields (RDAP and
Legacy Whois). Translations are currently limited to the short name (_short),
the name (_name), and the description (_description).

See the ipwhois CLI (ipwhois_utils_cli.py) for an example.

Import the human readable translation dictionaries

>>>> from ipwhois.hr import (HR_ASN, HR_ASN_ORIGIN, HR_RDAP_COMMON,
 HR_RDAP, HR_WHOIS, HR_WHOIS_NIR)

Usage Examples

IPv4 Strip Zeros

Strip leading zeros in each octet of an IPv4 address string.

>>>> from ipwhois.utils import ipv4_lstrip_zeros
>>>> print(ipv4_lstrip_zeros('074.125.025.229'))

74.125.25.229

CIDR Calculation

Get a list of CIDR range(s) from a start and end IP address.

>>>> from ipwhois.utils import calculate_cidr
>>>> print(calculate_cidr('192.168.0.9', '192.168.5.4'))

['192.168.0.9/32', '192.168.0.10/31', '192.168.0.12/30', '192.168.0.16/28',
'192.168.0.32/27', '192.168.0.64/26', '192.168.0.128/25', '192.168.1.0/24',
'192.168.2.0/23', '192.168.4.0/24', '192.168.5.0/30', '192.168.5.4/32']

Check if IP is reserved/defined

Check if an IPv4 or IPv6 address is in a reserved/defined pool.

>>>> from ipwhois.utils import (ipv4_is_defined, ipv6_is_defined)
>>>> print(ipv4_is_defined('192.168.0.1'))

(True, 'Private-Use Networks', 'RFC 1918')

>>>> print(ipv6_is_defined('fe80::'))

(True, 'Link-Local', 'RFC 4291, Section 2.5.6')

Country Code Mapping

Retrieve a dictionary mapping ISO 3166-1 country codes to country names.

>>>> from ipwhois import IPWhois
>>>> from ipwhois.utils import get_countries

>>>> countries = get_countries()
>>>> obj = IPWhois('74.125.225.229')
>>>> results = obj.lookup_whois(False)
>>>> print(countries[results['nets'][0]['country']])

United States

Iterable to unique elements (order preserved)

List unique elements, preserving the order. This was taken from the itertools
recipes.

>>>> from ipwhois.utils import unique_everseen
>>>> print(list(unique_everseen(['b', 'a', 'b', 'a', 'c', 'a', 'b', 'c')))

['b', 'a', 'c']

Parse IPs/ports from text/file

Search an input string and/or file, extracting and counting IPv4/IPv6
addresses/networks. Summarizes ports with sub-counts.

>>>> from ipwhois.utils import unique_addresses
>>>> from pprint import pprint

>>>> input_data = (
 'You can have IPs like 74.125.225.229, or 2001:4860:4860::8888'
 'Put a port at the end 74.125.225.229:80 or for IPv6: '
 '[2001:4860:4860::8888]:443 or even networks like '
 '74.125.0.0/16 and 2001:4860::/32.'
)

>>>> results = unique_addresses(data=input_data, file_path=None)
>>>> pprint(results)

{'2001:4860:4860::8888': {'count': 2, 'ports': {'443': 1}},
 '2001:4860::/32': {'count': 1, 'ports': {}},
 '74.125.0.0/16': {'count': 1, 'ports': {}},
 '74.125.225.229': {'count': 2, 'ports': {'80': 1}}}

Generate random IP addresses

Generate random, unique IPv4/IPv6 addresses that are not defined (can be
looked up using ipwhois).

>>>> from ipwhois.utils import ipv4_generate_random
>>>> for address in ipv4_generate_random(10):
>>>> print(address)

71.58.89.10
17.206.180.200
156.94.166.94
36.92.169.70
52.214.0.208
174.254.156.179
33.184.228.52
17.58.3.61
101.151.158.16
61.162.38.154

>>>> from ipwhois.utils import ipv6_generate_random
>>>> for address in ipv6_generate_random(10):
>>>> print(address)

218e:a9ad:aae4:431c:ff16:eb94:f063:47f7
24ba:3185:a26f:fd30:5756:16d5:b4ab:771b
38ad:f797:360a:d98e:4f3b:b1c8:5811:8425
2c0e:9add:6b48:96c4:d22:2674:8067:2de9
3b72:414b:c387:4650:c4a6:eed3:21a8:ba9b
3d24:4053:dd81:d269:2cdc:91c9:b0f8:830e
32a4:8ef8:807:1bf0:e866:c8d7:d69e:2a52
2a2b:eb87:d368:89ee:6861:555:32c6:d552
2ee6:5445:f1ff:b1c6:d68f:3ee1:1e31:fe34
2c6b:393f:ae7:a0f7:1c2:2e19:bab1:af9c

 CLI

CLI

ipwhois_cli.py and ipwhois_utils_cli.py are command line interfaces for the
ipwhois library. When using pip to install ipwhois, the CLI scripts are
installed to your Python environment Scripts directory.

	ipwhois_cli.py has full ipwhois.py functionality.

	ipwhois_utils_cli.py has full utils.py functionality.

	The others (net.py, rdap.py, whois.py, nir.py, asn.py) will be included in a
future release.

ipwhois_cli.py

Usage

	ipwhois_cli.py [-h] [–whois] [–exclude_nir] [–json] [–hr]

	[–show_name] [–colorize] [–timeout TIMEOUT]
[–proxy_http “PROXY_HTTP”]
[–proxy_https “PROXY_HTTPS”] [–disallow_permutations]
[–inc_raw] [–retry_count RETRY_COUNT]
[–asn_alts “ASN_ALTS”] [–asn_methods “ASN_METHODS”]
[–extra_org_map “EXTRA_ORG_MAP”]
[–skip_asn_description] [–depth COLOR_DEPTH]
[–excluded_entities “EXCLUDED_ENTITIES”] [–bootstrap]
[–rate_limit_timeout RATE_LIMIT_TIMEOUT]
[–get_referral] [–extra_blacklist “EXTRA_BLACKLIST”]
[–ignore_referral_errors] [–field_list “FIELD_LIST”]
[–nir_field_list “NIR_FIELD_LIST”] –addr “IP”

ipwhois CLI interface

	optional arguments:

	

	
-h, --help
	show this help message and exit

	
--whois
	Retrieve whois data via legacy Whois (port 43) instead
of RDAP (default).

	
--exclude_nir
	Disable NIR whois lookups (JPNIC, KRNIC). This is the
opposite of the ipwhois inc_nir, in order to enable
inc_nir by default in the CLI.

	
--json
	Output results in JSON format.

	Output options:

	

	
--hr
	If set, returns results with human readable key
translations.

	
--show_name
	If this and –hr are set, the key name is shown in
parentheses afterits short value

	
--colorize
	If set, colorizes the output using ANSI. Should work
in most platform consoles.

	IPWhois settings:

	

	
--timeout TIMEOUT

	 	The default timeout for socket connections in seconds.

	
--proxy_http PROXY_HTTP

	 	The proxy HTTP address passed to request.ProxyHandler.
User auth can be passed like
“http://user:pass@192.168.0.1:80“

	
--proxy_https PROXY_HTTPS

	 	The proxy HTTPS address passed to
request.ProxyHandler. User auth can be passed like
“https://user:pass@192.168.0.1:443“

	
--disallow_permutations

	 	Disable additional methods if DNS lookups to Cymru
fail. This is the opposite of the ipwhois
allow_permutations, in order to enable
allow_permutations by default in the CLI. WARNING
deprecated in favor of new argument asn_methods.

	Common settings (RDAP & Legacy Whois):

	

	
--inc_raw
	Include the raw whois results in the output.

	
--retry_count RETRY_COUNT

	 	The number of times to retry in case socket errors,
timeouts, connection resets, etc. are encountered.

	
--asn_alts ASN_ALTS

	 	A comma delimited list of additional lookup types to
attempt if the ASN dns lookup fails. Allow
permutations must be enabled. Defaults to all:
“whois,http”. WARNING deprecated in favor of new
argument asn_methods.

	
--asn_methods ASN_METHODS

	 	List of ASN lookup types to attempt, in order.
Defaults to all [‘dns’, ‘whois’, ‘http’].

	
--extra_org_map EXTRA_ORG_MAP

	 	Dictionary mapping org handles to RIRs. This is for
limited cases where ARIN REST (ASN fallback HTTP
lookup) does not show an RIR as the org handle e.g.,
DNIC (which is now the built in ORG_MAP) e.g.,
{“DNIC”: “arin”}. Valid RIR values are (note the
case-sensitive - this is meant to match the REST
result): ‘ARIN’, ‘RIPE’, ‘apnic’, ‘lacnic’, ‘afrinic’

	
--skip_asn_description

	 	Don’t run an additional query when pulling ASN
information via dns (to get the ASN description). This
is the opposite of the ipwhois get_asn_description
argument, in order to enable get_asn_description by
default in the CLI.

	RDAP settings:

	

	
--depth COLOR_DEPTH

	 	If not –whois, how many levels deep to run RDAP
queries when additional referenced objects are found.

	
--excluded_entities EXCLUDED_ENTITIES

	 	If not –whois, a comma delimited list of entity
handles to not perform lookups.

	
--bootstrap
	If not –whois, performs lookups via ARIN bootstrap
rather than lookups based on ASN data. ASN lookups are
not performed and no output for any of the asn* fields
is provided.

	
--rate_limit_timeout RATE_LIMIT_TIMEOUT

	 	If not –whois, the number of seconds to wait before
retrying when a rate limit notice is returned via
rdap+json.

	Legacy Whois settings:

	

	
--get_referral
	If –whois, retrieve referral whois information, if
available.

	
--extra_blacklist EXTRA_BLACKLIST

	 	If –whois, A list of blacklisted whois servers in
addition to the global BLACKLIST.

	
--ignore_referral_errors

	 	If –whois, ignore and continue when an exception is
encountered on referral whois lookups.

	
--field_list FIELD_LIST

	 	If –whois, a list of fields to parse: [‘name’,
‘handle’, ‘description’, ‘country’, ‘state’, ‘city’,
‘address’, ‘postal_code’, ‘emails’, ‘created’,
‘updated’]

	NIR (National Internet Registry) settings:

	

	
--nir_field_list NIR_FIELD_LIST

	 	If not –exclude_nir, a list of fields to parse:
[‘name’, ‘handle’, ‘country’, ‘address’,
‘postal_code’, ‘nameservers’, ‘created’, ‘updated’,
‘contact_admin’, ‘contact_tech’]

	Input (Required):

	

	
--addr IP
	An IPv4 or IPv6 address as a string.

Usage Examples

Basic usage

ipwhois_cli.py --addr 74.125.225.229 --hr --show_name --colorize --depth 1

ipwhois_utils_cli.py

Usage

	ipwhois_utils_cli.py [-h] [–ipv4_lstrip_zeros IPADDRESS]

	[–calculate_cidr IPADDRESS IPADDRESS]
[–get_countries] [–get_country COUNTRYCODE]
[–ipv4_is_defined IPADDRESS]
[–ipv6_is_defined IPADDRESS]
[–unique_everseen ITERABLE]
[–unique_addresses FILEPATH] [–colorize]

ipwhois utilities CLI interface

	optional arguments:

	

	
-h, --help
	show this help message and exit

	
--ipv4_lstrip_zeros IPADDRESS

	 	Strip leading zeros in each octet of an IPv4 address.

	
--calculate_cidr IPADDRESSRANGE

	 	Calculate a CIDR range(s) from a start and end IP
address. Separate start and end address arguments by
space.

	
--get_countries

	 	Output a dictionary containing ISO_3166-1 country
codes to names.

	
--get_country COUNTRYCODE

	 	Output the ISO_3166-1 name for a country code.

	
--ipv4_is_defined IPADDRESS

	 	Check if an IPv4 address is defined (in a reserved
address range).

	
--ipv6_is_defined IPADDRESS

	 	Check if an IPv6 address is defined (in a reserved
address range).

	
--unique_everseen ITERABLE

	 	List unique elements from input iterable, preserving
the order.

	
--unique_addresses FILEPATH

	 	Search an input file, extracting, counting, and
summarizing IPv4/IPv6 addresses/networks.

	Output options:

	

	
--colorize
	If set, colorizes the output using ANSI. Should work
in most platform consoles.

Usage Examples

ipv4_lstrip_zeros

>>>> ipwhois_utils_cli.py --ipv4_lstrip_zeros 074.125.025.229

74.125.25.229

calculate_cidr

>>>> ipwhois_utils_cli.py --calculate_cidr 192.168.0.9 192.168.5.4

Found 12 CIDR blocks for (192.168.0.9, 192.168.5.4):
192.168.0.9/32
192.168.0.10/31
192.168.0.12/30
192.168.0.16/28
192.168.0.32/27
192.168.0.64/26
192.168.0.128/25
192.168.1.0/24
192.168.2.0/23
192.168.4.0/24
192.168.5.0/30
192.168.5.4/32

get_countries

>>>> ipwhois_utils_cli.py --get_countries

Found 252 countries:
AD: Andorra
AE: United Arab Emirates
AF: Afghanistan
AG: Antigua and Barbuda
AI: Anguilla
AL: Albania
AM: Armenia
...

get_country

>>>> ipwhois_utils_cli.py --get_country US

Match found for country code (US):
United States

ipv4_is_defined

>>>> ipwhois_utils_cli.py --ipv4_is_defined 192.168.0.1

192.168.0.1 is defined:
Name: Private-Use Networks
RFC: RFC 1918

ipv6_is_defined

>>>> ipwhois_utils_cli.py --ipv6_is_defined fc00::

fc00:: is defined:
Name: Unique Local Unicast
RFC: RFC 4193

unique_everseen

>>>> ipwhois_utils_cli.py --unique_everseen [4,2,6,4,6,2]

Unique everseen:
[4, 2, 6]

unique_addresses

>>>> ipwhois_utils_cli.py --unique_addresses /tmp/some.file

Found 477 unique addresses:
74.125.225.229: Count: 5, Ports: {'22': 1}
2001:4860::/32: Count: 4, Ports: {'443': 1, '80': 2}
2001:4860:4860::8888: Count: 3, Ports: {}
...

 Experimental Functions

Experimental Functions

Caution

Functions in experimental.py contain new functionality that has not yet
been widely tested. Bulk lookup support contained here can result in
significant system/network resource utilization. Additionally, abuse of
this functionality may get you banned by the various services queried by
this library. Use at your own discretion.

Bulk ASN Lookups

The function for retrieving ASN information for multiple IP addresses from
Cymru via port 43/tcp (WHOIS).

ipwhois.experimental.get_bulk_asn_whois() [https://ipwhois.readthedocs.io/en/latest/ipwhois.html#ipwhois.experimental.get_bulk_asn_whois]

Input

Arguments supported:

	Key
	Type
	Description

	addresses
	list
	List of IP address strings to lookup.

	retry_count
	int
	The number of times to retry in case socket
errors, timeouts, connection resets, etc. are
encountered. Defaults to 3.

	timeout
	int
	The default timeout for socket connections in
seconds. Defaults to 120.

Output

Outputs a string of the raw ASN bulk data, new line separated. The first line
is obsolete.

Usage Examples

Basic usage

>>>> from ipwhois.experimental import get_bulk_asn_whois
>>>> from pprint import pprint

>>>> ip_list = ['74.125.225.229', '2001:4860:4860::8888', '62.239.237.1', '2a00:2381:ffff::1', '210.107.73.73', '2001:240:10c:1::ca20:9d1d', '200.57.141.161', '2801:10:c000::', '196.11.240.215', '2001:43f8:7b0::', '133.1.2.5', '115.1.2.3']
>>>> results = get_bulk_asn_whois(addresses=ip_list)
>>>> pprint(results.split('\n'))

[
"Bulk mode; whois.cymru.com [2017-07-30 23:02:21 +0000]",
"15169 | 74.125.225.229 | 74.125.225.0/24 | US | arin | 2007-03-13 | GOOGLE - Google Inc., US",
"15169 | 2001:4860:4860::8888 | 2001:4860::/32 | US | arin | 2005-03-14 | GOOGLE - Google Inc., US",
"2856 | 62.239.237.1 | 62.239.0.0/16 | GB | ripencc | 2001-01-02 | BT-UK-AS BTnet UK Regional network, GB",
"2856 | 2a00:2381:ffff::1 | 2a00:2380::/25 | GB | ripencc | 2007-08-29 | BT-UK-AS BTnet UK Regional network, GB",
"3786 | 210.107.73.73 | 210.107.0.0/17 | KR | apnic | | LGDACOM LG DACOM Corporation, KR",
"2497 | 2001:240:10c:1::ca20:9d1d | 2001:240::/32 | JP | apnic | 2000-03-08 | IIJ Internet Initiative Japan Inc., JP",
"19373 | 200.57.141.161 | 200.57.128.0/20 | MX | lacnic | 2000-12-04 | Triara.com, S.A. de C.V., MX",
"NA | 2801:10:c000:: | NA | CO | lacnic | 2013-10-29 | NA",
"12091 | 196.11.240.215 | 196.11.240.0/24 | ZA | afrinic | | MTNNS-1, ZA",
"37578 | 2001:43f8:7b0:: | 2001:43f8:7b0::/48 | KE | afrinic | 2013-03-22 | Tespok, KE",
"4730 | 133.1.2.5 | 133.1.0.0/16 | JP | apnic | | ODINS Osaka University, JP",
"4134 | 115.1.2.3 | 115.0.0.0/14 | KR | apnic | 2008-07-01 | CHINANET-BACKBONE No.31,Jin-rong Street, CN",
""
}

Bulk RDAP Lookups

The function for bulk retrieving and parsing whois information for a list of
IP addresses via HTTP (RDAP). This bulk lookup method uses bulk ASN Whois
lookups first to retrieve the ASN for each IP. It then optimizes RDAP queries
to achieve the fastest overall time, accounting for rate-limiting RIRs.

ipwhois.experimental.bulk_lookup_rdap() [https://ipwhois.readthedocs.io/en/latest/ipwhois.html#ipwhois.experimental.bulk_lookup_rdap]

Input

Arguments supported:

	Key
	Type
	Description

	addresses
	list
	List of IP address strings to lookup.

	inc_raw
	bool
	Whether to include the raw whois results in
the returned dictionary. Defaults to False.

	retry_count
	int
	The number of times to retry in case socket
errors, timeouts, connection resets, etc. are
encountered. Defaults to 3.

	depth
	int
	How many levels deep to run queries when
additional referenced objects are found.
Defaults to 0.

	excluded_entities
	list
	Entity handles to not perform lookups.
Defaults to None.

	rate_limit_timeout
	int
	The number of seconds to wait before retrying
when a rate limit notice isreturned via
rdap+json. Defaults to 60.

	socket_timeout
	int
	The default timeout for socket connections in
seconds. Defaults to 10.

	asn_timeout
	int
	The default timeout for bulk ASN lookups in
seconds. Defaults to 240.

	proxy_openers
	list
	List of urllib.request.OpenerDirector proxy
openers for single/rotating proxy support.
Defaults to None.

Output

The output namedtuple from ipwhois.experimental.bulk_lookup_rdap().

	Key
	Type
	Description

	results
	dict
	IP address keys with the values as dictionaries
returned by IPWhois.lookup_rdap() [https://ipwhois.readthedocs.io/en/latest/RDAP.html#results-dictionary]

	stats
	dict
	Stats for the lookup containing the keys
identified in Stats Dictionary

Stats Dictionary

The stats dictionary returned by ipwhois.experimental.bulk_lookup_rdap()

{
 'ip_input_total' (int) - The total number of addresses
 originally provided for lookup via the addresses argument.
 'ip_unique_total' (int) - The total number of unique addresses
 found in the addresses argument.
 'ip_lookup_total' (int) - The total number of addresses that
 lookups were attempted for, excluding any that failed ASN
 registry checks.
 'lacnic' (dict) -
 {
 'failed' (list) - The addresses that failed to lookup.
 Excludes any that failed initially, but succeeded after
 futher retries.
 'rate_limited' (list) - The addresses that encountered
 rate-limiting. Unless an address is also in 'failed',
 it eventually succeeded.
 'total' (int) - The total number of addresses belonging to
 this RIR that lookups were attempted for.
 }
 'ripencc' (dict) - Same as 'lacnic' above.
 'apnic' (dict) - Same as 'lacnic' above.
 'afrinic' (dict) - Same as 'lacnic' above.
 'arin' (dict) - Same as 'lacnic' above.
 'unallocated_addresses' (list) - The addresses that are
 unallocated/failed ASN lookups. These can be addresses that
 are not listed for one of the 5 RIRs (other). No attempt
 was made to perform an RDAP lookup for these.
}

Usage Examples

Basic usage

>>>> from ipwhois.experimental import bulk_lookup_rdap
>>>> from pprint import pprint

>>>> ip_list = ['74.125.225.229', '2001:4860:4860::8888', '62.239.237.1', '2a00:2381:ffff::1', '210.107.73.73', '2001:240:10c:1::ca20:9d1d', '200.57.141.161', '2801:10:c000::', '196.11.240.215', '2001:43f8:7b0::', '133.1.2.5', '115.1.2.3']
>>>> results, stats = bulk_lookup_rdap(addresses=ip_list)
>>>> pprint(stats)

{
"afrinic": {
 "failed": [],
 "rate_limited": [],
 "total": 2
},
"apnic": {
 "failed": [
 "115.1.2.3"
],
 "rate_limited": [],
 "total": 4
},
"arin": {
 "failed": [],
 "rate_limited": [],
 "total": 2
},
"ip_input_total": 12,
"ip_lookup_total": 12,
"ip_unique_total": 12,
"lacnic": {
 "failed": [],
 "rate_limited": [],
 "total": 2
},
"ripencc": {
 "failed": [],
 "rate_limited": [],
 "total": 2
},
"unallocated_addresses": []
}

 Library Structure

Library Structure

	
class ipwhois.ipwhois.IPWhois(address, timeout=5, proxy_opener=None, allow_permutations=True)

	The wrapper class for performing whois/RDAP lookups and parsing for
IPv4 and IPv6 addresses.

	Parameters:	
	address (str/int/IPv4Address/IPv6Address) – An IPv4 or IPv6 address

	timeout (int) – The default timeout for socket connections in
seconds. Defaults to 5.

	proxy_opener (urllib.request.OpenerDirector) – The request for
proxy support. Defaults to None.

	allow_permutations (bool) – Allow net.Net() to use additional
methods if DNS lookups to Cymru fail. WARNING deprecated in
favor of new argument asn_methods. Defaults to True.

	
lookup_rdap(inc_raw=False, retry_count=3, depth=0, excluded_entities=None, bootstrap=False, rate_limit_timeout=120, asn_alts=None, extra_org_map=None, inc_nir=True, nir_field_list=None, asn_methods=None, get_asn_description=True)

	The function for retrieving and parsing whois information for an IP
address via HTTP (RDAP).

This is now the recommended method, as RDAP contains much better
information to parse.

	Parameters:	
	inc_raw (bool) – Whether to include the raw whois results in
the returned dictionary. Defaults to False.

	retry_count (int) – The number of times to retry in case
socket errors, timeouts, connection resets, etc. are
encountered. Defaults to 3.

	depth (int) – How many levels deep to run queries when
additional referenced objects are found. Defaults to 0.

	excluded_entities (list) – Entity handles to not perform
lookups. Defaults to None.

	bootstrap (bool) – If True, performs lookups via ARIN
bootstrap rather than lookups based on ASN data. ASN lookups
are not performed and no output for any of the asn* fields is
provided. Defaults to False.

	rate_limit_timeout (int) – The number of seconds to wait
before retrying when a rate limit notice is returned via
rdap+json. Defaults to 120.

	asn_alts (list) – Additional lookup types to attempt if the
ASN dns lookup fails. Allow permutations must be enabled.
If None, defaults to all [‘whois’, ‘http’]. WARNING
deprecated in favor of new argument asn_methods.

	extra_org_map (dict) – Dictionary mapping org handles to
RIRs. This is for limited cases where ARIN REST (ASN fallback
HTTP lookup) does not show an RIR as the org handle e.g., DNIC
(which is now the built in ORG_MAP) e.g., {‘DNIC’: ‘arin’}.
Valid RIR values are (note the case-sensitive - this is meant
to match the REST result):
‘ARIN’, ‘RIPE’, ‘apnic’, ‘lacnic’, ‘afrinic’
Defaults to None.

	inc_nir (bool) – Whether to retrieve NIR (National Internet
Registry) information, if registry is JPNIC (Japan) or KRNIC
(Korea). If True, extra network requests will be required.
If False, the information returned for JP or KR IPs is
severely restricted. Defaults to True.

	nir_field_list (list) – If provided and inc_nir, a list of
fields to parse:
[‘name’, ‘handle’, ‘country’, ‘address’, ‘postal_code’,
‘nameservers’, ‘created’, ‘updated’, ‘contacts’]
If None, defaults to all.

	asn_methods (list) – ASN lookup types to attempt, in order.
If None, defaults to all [‘dns’, ‘whois’, ‘http’].

	get_asn_description (bool) – Whether to run an additional
query when pulling ASN information via dns, in order to get
the ASN description. Defaults to True.

	Returns:	The IP RDAP lookup results

{
 'query' (str) - The IP address
 'asn' (str) - The Autonomous System Number
 'asn_date' (str) - The ASN Allocation date
 'asn_registry' (str) - The assigned ASN registry
 'asn_cidr' (str) - The assigned ASN CIDR
 'asn_country_code' (str) - The assigned ASN country code
 'asn_description' (str) - The ASN description
 'entities' (list) - Entity handles referred by the top
 level query.
 'network' (dict) - Network information which consists of
 the fields listed in the ipwhois.rdap._RDAPNetwork
 dict.
 'objects' (dict) - Mapping of entity handle->entity dict
 which consists of the fields listed in the
 ipwhois.rdap._RDAPEntity dict. The raw result is
 included for each object if the inc_raw parameter
 is True.
 'raw' (dict) - Whois results in json format if the inc_raw
 parameter is True.
 'nir' (dict) - ipwhois.nir.NIRWhois results if inc_nir is
 True.
}

	Return type:	dict

	
lookup_whois(inc_raw=False, retry_count=3, get_referral=False, extra_blacklist=None, ignore_referral_errors=False, field_list=None, asn_alts=None, extra_org_map=None, inc_nir=True, nir_field_list=None, asn_methods=None, get_asn_description=True)

	The function for retrieving and parsing whois information for an IP
address via port 43 (WHOIS).

	Parameters:	
	inc_raw (bool) – Whether to include the raw whois results in
the returned dictionary. Defaults to False.

	retry_count (int) – The number of times to retry in case
socket errors, timeouts, connection resets, etc. are
encountered. Defaults to 3.

	get_referral (bool) – Whether to retrieve referral whois
information, if available. Defaults to False.

	extra_blacklist (list) – Blacklisted whois servers in
addition to the global BLACKLIST. Defaults to None.

	ignore_referral_errors (bool) – Whether to ignore and
continue when an exception is encountered on referral whois
lookups. Defaults to False.

	field_list (list) – If provided, a list of fields to parse:
[‘name’, ‘handle’, ‘description’, ‘country’, ‘state’, ‘city’,
‘address’, ‘postal_code’, ‘emails’, ‘created’, ‘updated’]
If None, defaults to all.

	asn_alts (list) – Additional lookup types to attempt if the
ASN dns lookup fails. Allow permutations must be enabled.
If None, defaults to all [‘whois’, ‘http’]. WARNING
deprecated in favor of new argument asn_methods.

	extra_org_map (dict) – Dictionary mapping org handles to
RIRs. This is for limited cases where ARIN REST (ASN fallback
HTTP lookup) does not show an RIR as the org handle e.g., DNIC
(which is now the built in ORG_MAP) e.g., {‘DNIC’: ‘arin’}.
Valid RIR values are (note the case-sensitive - this is meant
to match the REST result):
‘ARIN’, ‘RIPE’, ‘apnic’, ‘lacnic’, ‘afrinic’
Defaults to None.

	inc_nir (bool) – Whether to retrieve NIR (National Internet
Registry) information, if registry is JPNIC (Japan) or KRNIC
(Korea). If True, extra network requests will be required.
If False, the information returned for JP or KR IPs is
severely restricted. Defaults to True.

	nir_field_list (list) – If provided and inc_nir, a list of
fields to parse:
[‘name’, ‘handle’, ‘country’, ‘address’, ‘postal_code’,
‘nameservers’, ‘created’, ‘updated’, ‘contacts’]
If None, defaults to all.

	asn_methods (list) – ASN lookup types to attempt, in order.
If None, defaults to all [‘dns’, ‘whois’, ‘http’].

	get_asn_description (bool) – Whether to run an additional
query when pulling ASN information via dns, in order to get
the ASN description. Defaults to True.

	Returns:	The IP whois lookup results

{
 'query' (str) - The IP address
 'asn' (str) - The Autonomous System Number
 'asn_date' (str) - The ASN Allocation date
 'asn_registry' (str) - The assigned ASN registry
 'asn_cidr' (str) - The assigned ASN CIDR
 'asn_country_code' (str) - The assigned ASN country code
 'asn_description' (str) - The ASN description
 'nets' (list) - Dictionaries containing network
 information which consists of the fields listed in the
 ipwhois.whois.RIR_WHOIS dictionary.
 'raw' (str) - Raw whois results if the inc_raw parameter
 is True.
 'referral' (dict) - Referral whois information if
 get_referral is True and the server is not blacklisted.
 Consists of fields listed in the ipwhois.whois.RWHOIS
 dictionary.
 'raw_referral' (str) - Raw referral whois results if the
 inc_raw parameter is True.
 'nir' (dict) - ipwhois.nir.NIRWhois() results if inc_nir
 is True.
}

	Return type:	dict

	
class ipwhois.net.Net(address, timeout=5, proxy_opener=None, allow_permutations=True)

	The class for performing network queries.

	Parameters:	
	address (str/int/IPv4Address/IPv6Address) – An IPv4 or IPv6 address

	timeout (int) – The default timeout for socket connections in
seconds. Defaults to 5.

	proxy_opener (urllib.request.OpenerDirector) – The request for
proxy support. Defaults to None.

	allow_permutations (bool) – Allow net.Net() to use additional
methods if DNS lookups to Cymru fail. WARNING deprecated in
favor of new argument asn_methods. Defaults to True.

	Raises:	IPDefinedError – The address provided is defined (does not need to be
resolved).

	
get_asn_dns()

	The function for retrieving ASN information for an IP address from
Cymru via port 53 (DNS).

	Returns:	The raw ASN data.

	Return type:	list

	Raises:	ASNLookupError – The ASN lookup failed.

	
get_asn_http(retry_count=3)

	The function for retrieving ASN information for an IP address from
Arin via port 80 (HTTP). Currently limited to fetching asn_registry
through a Arin whois (REST) lookup. The other values are returned as
None to keep a consistent dict output. This should be used as a last
chance fallback call behind ASN DNS & ASN Whois lookups.

	Parameters:	retry_count (int) – The number of times to retry in case
socket errors, timeouts, connection resets, etc. are
encountered. Defaults to 3.

	Returns:	The ASN data in json format.

	Return type:	dict

	Raises:	ASNLookupError – The ASN lookup failed.

	
get_asn_origin_whois(asn_registry='radb', asn=None, retry_count=3, server=None, port=43)

	The function for retrieving CIDR info for an ASN via whois.

	Parameters:	
	asn_registry (str) – The source to run the query against
(asn.ASN_ORIGIN_WHOIS).

	asn (str) – The AS number (required).

	retry_count (int) – The number of times to retry in case
socket errors, timeouts, connection resets, etc. are
encountered. Defaults to 3.

	server (str) – An optional server to connect to.

	port (int) – The network port to connect on. Defaults to 43.

	Returns:	The raw ASN origin whois data.

	Return type:	str

	Raises:	
	WhoisLookupError – The ASN origin whois lookup failed.

	WhoisRateLimitError – The ASN origin Whois request rate limited and
retries were exhausted.

	
get_asn_verbose_dns(asn=None)

	The function for retrieving the information for an ASN from
Cymru via port 53 (DNS). This is needed since IP to ASN mapping via
Cymru DNS does not return the ASN Description like Cymru Whois does.

	Parameters:	asn (str) – The AS number (required).

	Returns:	The raw ASN data.

	Return type:	str

	Raises:	ASNLookupError – The ASN lookup failed.

	
get_asn_whois(retry_count=3)

	The function for retrieving ASN information for an IP address from
Cymru via port 43/tcp (WHOIS).

	Parameters:	retry_count (int) – The number of times to retry in case
socket errors, timeouts, connection resets, etc. are
encountered. Defaults to 3.

	Returns:	The raw ASN data.

	Return type:	str

	Raises:	ASNLookupError – The ASN lookup failed.

	
get_host(retry_count=3)

	The function for retrieving host information for an IP address.

	Parameters:	retry_count (int) – The number of times to retry in case
socket errors, timeouts, connection resets, etc. are
encountered. Defaults to 3.

	Returns:	

	hostname (str):	The hostname returned mapped to the given IP
address.

	aliaslist (list):

	 	Alternate names for the given IP address.

	ipaddrlist (list):

	 	IPv4/v6 addresses mapped to the same hostname.

	Return type:	namedtuple

	Raises:	HostLookupError – The host lookup failed.

	
get_http_json(url=None, retry_count=3, rate_limit_timeout=120, headers=None)

	The function for retrieving a json result via HTTP.

	Parameters:	
	url (str) – The URL to retrieve (required).

	retry_count (int) – The number of times to retry in case
socket errors, timeouts, connection resets, etc. are
encountered. Defaults to 3.

	rate_limit_timeout (int) – The number of seconds to wait
before retrying when a rate limit notice is returned via
rdap+json or HTTP error 429. Defaults to 60.

	headers (dict) – The HTTP headers. The Accept header
defaults to ‘application/rdap+json’.

	Returns:	The data in json format.

	Return type:	dict

	Raises:	
	HTTPLookupError – The HTTP lookup failed.

	HTTPRateLimitError – The HTTP request rate limited and retries
were exhausted.

	
get_http_raw(url=None, retry_count=3, headers=None, request_type='GET', form_data=None)

	The function for retrieving a raw HTML result via HTTP.

	Parameters:	
	url (str) – The URL to retrieve (required).

	retry_count (int) – The number of times to retry in case
socket errors, timeouts, connection resets, etc. are
encountered. Defaults to 3.

	headers (dict) – The HTTP headers. The Accept header
defaults to ‘text/html’.

	request_type (str) – Request type ‘GET’ or ‘POST’. Defaults
to ‘GET’.

	form_data (dict) – Optional form POST data.

	Returns:	The raw data.

	Return type:	str

	Raises:	HTTPLookupError – The HTTP lookup failed.

	
get_whois(asn_registry='arin', retry_count=3, server=None, port=43, extra_blacklist=None)

	The function for retrieving whois or rwhois information for an IP
address via any port. Defaults to port 43/tcp (WHOIS).

	Parameters:	
	asn_registry (str) – The NIC to run the query against.
Defaults to ‘arin’.

	retry_count (int) – The number of times to retry in case
socket errors, timeouts, connection resets, etc. are
encountered. Defaults to 3.

	server (str) – An optional server to connect to. If
provided, asn_registry will be ignored.

	port (int) – The network port to connect on. Defaults to 43.

	extra_blacklist (list of str) – Blacklisted whois
servers in addition to the global BLACKLIST. Defaults to None.

	Returns:	The raw whois data.

	Return type:	str

	Raises:	
	BlacklistError – Raised if the whois server provided is in the
global BLACKLIST or extra_blacklist.

	WhoisLookupError – The whois lookup failed.

	WhoisRateLimitError – The Whois request rate limited and retries
were exhausted.

	
lookup_asn(*args, **kwargs)

	Temporary wrapper for IP ASN lookups (moved to
asn.IPASN.lookup()). This will be removed in a future
release (1.0.0).

	
class ipwhois.rdap.RDAP(net)

	The class for parsing IP address whois information via RDAP:
https://tools.ietf.org/html/rfc7483
https://www.arin.net/resources/rdap.html

	Parameters:	net (ipwhois.net.Net) – The network object.

	Raises:	
	NetError – The parameter provided is not an instance of
ipwhois.net.Net

	IPDefinedError – The address provided is defined (does not need to be
resolved).

	
lookup(inc_raw=False, retry_count=3, asn_data=None, depth=0, excluded_entities=None, response=None, bootstrap=False, rate_limit_timeout=120)

	The function for retrieving and parsing information for an IP
address via RDAP (HTTP).

	Parameters:	
	inc_raw (bool, optional) – Whether to include the raw
results in the returned dictionary. Defaults to False.

	retry_count (int) – The number of times to retry in case
socket errors, timeouts, connection resets, etc. are
encountered. Defaults to 3.

	asn_data (dict) – Result from
ipwhois.asn.IPASN.lookup. Optional if the bootstrap
parameter is True.

	depth (int) – How many levels deep to run queries when
additional referenced objects are found. Defaults to 0.

	excluded_entities (list) – Entity handles to not perform
lookups. Defaults to None.

	response (str) – Optional response object, this bypasses the
RDAP lookup.

	bootstrap (bool) – If True, performs lookups via ARIN
bootstrap rather than lookups based on ASN data. Defaults to
False.

	rate_limit_timeout (int) – The number of seconds to wait
before retrying when a rate limit notice is returned via
rdap+json. Defaults to 120.

	Returns:	The IP RDAP lookup results

{
 'query' (str) - The IP address
 'entities' (list) - Entity handles referred by the top
 level query.
 'network' (dict) - Network information which consists of
 the fields listed in the ipwhois.rdap._RDAPNetwork
 dict.
 'objects' (dict) - Mapping of entity handle->entity dict
 which consists of the fields listed in the
 ipwhois.rdap._RDAPEntity dict. The raw result is
 included for each object if the inc_raw parameter
 is True.
}

	Return type:	dict

	
class ipwhois.rdap._RDAPCommon(json_result)

	The common class for parsing RDAP objects:
https://tools.ietf.org/html/rfc7483#section-5

	Parameters:	json_result (dict) – The JSON response from an RDAP query.

	Raises:	ValueError – vcard is not a known RDAP object.

	
_parse()

	The function for parsing the JSON response to the vars dictionary.

	
summarize_events(events_json)

	The function for summarizing RDAP events in to a unique list.
https://tools.ietf.org/html/rfc7483#section-4.5

	Parameters:	events_json (dict) – A json mapping of events from RDAP
results.

	Returns:	Unique RDAP events information: [{
 'action' (str) - The reason for an event.
 'timestamp' (str) - The timestamp for when an event
 occured.
 'actor' (str) - The identifier for an event initiator.
}]

	Return type:	list of dict

	
summarize_links(links_json)

	The function for summarizing RDAP links in to a unique list.
https://tools.ietf.org/html/rfc7483#section-4.2

	Parameters:	links_json (dict) – A json mapping of links from RDAP
results.

	Returns:	Unique RDAP links.

	Return type:	list of str

	
summarize_notices(notices_json)

	The function for summarizing RDAP notices in to a unique list.
https://tools.ietf.org/html/rfc7483#section-4.3

	Parameters:	notices_json (dict) – A json mapping of notices from RDAP
results.

	Returns:	Unique RDAP notices information: [{
 'title' (str) - The title/header of the notice.
 'description' (str) - The description/body of the notice.
 'links' (list) - Unique links returned by
 :obj:`ipwhois.rdap._RDAPCommon.summarize_links()`.
}]

	Return type:	list of dict

	
class ipwhois.rdap._RDAPContact(vcard)

	The class for parsing RDAP entity contact information objects:
https://tools.ietf.org/html/rfc7483#section-5.1
https://tools.ietf.org/html/rfc7095

	Parameters:	vcard (list of list) – The vcard list from an RDAP IP
address query.

	Raises:	InvalidEntityContactObject – vcard is not an RDAP entity contact
information object.

	
_parse_address(val)

	The function for parsing the vcard address.

	Parameters:	val (list) – The value to parse.

	
_parse_email(val)

	The function for parsing the vcard email addresses.

	Parameters:	val (list) – The value to parse.

	
_parse_kind(val)

	The function for parsing the vcard kind.

	Parameters:	val (list) – The value to parse.

	
_parse_name(val)

	The function for parsing the vcard name.

	Parameters:	val (list) – The value to parse.

	
_parse_phone(val)

	The function for parsing the vcard phone numbers.

	Parameters:	val (list) – The value to parse.

	
_parse_role(val)

	The function for parsing the vcard role.

	Parameters:	val (list) – The value to parse.

	
_parse_title(val)

	The function for parsing the vcard title.

	Parameters:	val (list) – The value to parse.

	
parse()

	The function for parsing the vcard to the vars dictionary.

	
class ipwhois.rdap._RDAPEntity(json_result)

	The class for parsing RDAP entity objects:
https://tools.ietf.org/html/rfc7483#section-5.1

	Parameters:	json_result (dict) – The JSON response from an RDAP query.

	Raises:	InvalidEntityObject – json_result is not an RDAP entity object.

	
parse()

	The function for parsing the JSON response to the vars dictionary.

	
class ipwhois.rdap._RDAPNetwork(json_result)

	The class for parsing RDAP network objects:
https://tools.ietf.org/html/rfc7483#section-5.4

	Parameters:	json_result (dict) – The JSON response from an RDAP IP address
query.

	Raises:	InvalidNetworkObject – json_result is not an RDAP network object.

	
parse()

	The function for parsing the JSON response to the vars dictionary.

	
class ipwhois.whois.Whois(net)

	The class for parsing via whois

	Parameters:	net (ipwhois.net.Net) – The network object.

	Raises:	
	NetError – The parameter provided is not an instance of
ipwhois.net.Net

	IPDefinedError – The address provided is defined (does not need to be
resolved).

	
_get_nets_arin(*args, **kwargs)

	Deprecated. This will be removed in a future release.

	
_get_nets_lacnic(*args, **kwargs)

	Deprecated. This will be removed in a future release.

	
_get_nets_other(*args, **kwargs)

	Deprecated. This will be removed in a future release.

	
_parse_fields(*args, **kwargs)

	Deprecated. This will be removed in a future release.

	
get_nets_arin(response)

	The function for parsing network blocks from ARIN whois data.

	Parameters:	response (str) – The response from the ARIN whois server.

	Returns:	Mapping of networks with start and end positions.[{
 'cidr' (str) - The network routing block
 'start' (int) - The starting point of the network
 'end' (int) - The endpoint point of the network
}]

	Return type:	list of dict

	
get_nets_lacnic(response)

	The function for parsing network blocks from LACNIC whois data.

	Parameters:	response (str) – The response from the LACNIC whois server.

	Returns:	Mapping of networks with start and end positions.[{
 'cidr' (str) - The network routing block
 'start' (int) - The starting point of the network
 'end' (int) - The endpoint point of the network
}]

	Return type:	list of dict

	
get_nets_other(response)

	The function for parsing network blocks from generic whois data.

	Parameters:	response (str) – The response from the whois/rwhois server.

	Returns:	Mapping of networks with start and end positions.[{
 'cidr' (str) - The network routing block
 'start' (int) - The starting point of the network
 'end' (int) - The endpoint point of the network
}]

	Return type:	list of dict

	
lookup(inc_raw=False, retry_count=3, response=None, get_referral=False, extra_blacklist=None, ignore_referral_errors=False, asn_data=None, field_list=None, is_offline=False)

	The function for retrieving and parsing whois information for an IP
address via port 43/tcp (WHOIS).

	Parameters:	
	inc_raw (bool, optional) – Whether to include the raw
results in the returned dictionary. Defaults to False.

	retry_count (int) – The number of times to retry in case
socket errors, timeouts, connection resets, etc. are
encountered. Defaults to 3.

	response (str) – Optional response object, this bypasses the
NIR lookup. Required when is_offline=True.

	get_referral (bool) – Whether to retrieve referral whois
information, if available. Defaults to False.

	extra_blacklist (list) – Blacklisted whois servers in
addition to the global BLACKLIST. Defaults to None.

	ignore_referral_errors (bool) – Whether to ignore and
continue when an exception is encountered on referral whois
lookups. Defaults to False.

	asn_data (dict) – Result from
ipwhois.asn.IPASN.lookup (required).

	field_list (list of str) – If provided, fields to
parse. Defaults to:

['name', 'handle', 'description', 'country', 'state',
'city', 'address', 'postal_code', 'emails', 'created',
'updated']

	is_offline (bool) – Whether to perform lookups offline. If
True, response and asn_data must be provided. Primarily used
for testing. Defaults to False.

	Returns:	The IP whois lookup results

{
 'query' (str) - The IP address
 'asn' (str) - The Autonomous System Number
 'asn_date' (str) - The ASN Allocation date
 'asn_registry' (str) - The assigned ASN registry
 'asn_cidr' (str) - The assigned ASN CIDR
 'asn_country_code' (str) - The assigned ASN country code
 'asn_description' (str) - The ASN description
 'nets' (list) - Dictionaries containing network
 information which consists of the fields listed in the
 ipwhois.whois.RIR_WHOIS dictionary.
 'raw' (str) - Raw whois results if the inc_raw parameter
 is True.
 'referral' (dict) - Referral whois information if
 get_referral is True and the server is not blacklisted.
 Consists of fields listed in the ipwhois.whois.RWHOIS
 dictionary.
 'raw_referral' (str) - Raw referral whois results if the
 inc_raw parameter is True.
}

	Return type:	dict

	
parse_fields(response, fields_dict, net_start=None, net_end=None, dt_format=None, field_list=None)

	The function for parsing whois fields from a data input.

	Parameters:	
	response (str) – The response from the whois/rwhois server.

	fields_dict (dict) – The mapping of fields to regex search
values (required).

	net_start (int) – The starting point of the network (if
parsing multiple networks). Defaults to None.

	net_end (int) – The ending point of the network (if parsing
multiple networks). Defaults to None.

	dt_format (str) – The format of datetime fields if known.
Defaults to None.

	field_list (list of str) – If provided, fields to
parse. Defaults to:

['name', 'handle', 'description', 'country', 'state',
'city', 'address', 'postal_code', 'emails', 'created',
'updated']

	Returns:	
	A dictionary of fields provided in fields_dict, mapping to

	the results of the regex searches.

	Return type:	dict

	
class ipwhois.nir.NIRWhois(net)

	The class for parsing whois data for NIRs (National Internet Registry).
JPNIC and KRNIC are currently the only NIRs supported. Output varies
based on NIR specific whois formatting.

	Parameters:	net (ipwhois.net.Net) – The network object.

	Raises:	
	NetError – The parameter provided is not an instance of
ipwhois.net.Net

	IPDefinedError – The address provided is defined (does not need to be
resolved).

	
_get_contact(*args, **kwargs)

	Deprecated. This will be removed in a future release.

	
_get_nets_jpnic(*args, **kwargs)

	Deprecated. This will be removed in a future release.

	
_get_nets_krnic(*args, **kwargs)

	Deprecated. This will be removed in a future release.

	
_parse_fields(*args, **kwargs)

	Deprecated. This will be removed in a future release.

	
get_contact(response=None, nir=None, handle=None, retry_count=3, dt_format=None)

	The function for retrieving and parsing NIR whois data based on
NIR_WHOIS contact_fields.

	Parameters:	
	response (str) – Optional response object, this bypasses the
lookup.

	nir (str) – The NIR to query (‘jpnic’ or ‘krnic’). Required
if response is None.

	handle (str) – For NIRs that have separate contact queries
(JPNIC), this is the contact handle to use in the query.
Defaults to None.

	retry_count (int) – The number of times to retry in case
socket errors, timeouts, connection resets, etc. are
encountered. Defaults to 3.

	dt_format (str) – The format of datetime fields if known.
Defaults to None.

	Returns:	
	Mapping of the fields provided in contact_fields, to their

	parsed results.

	Return type:	dict

	
get_nets_jpnic(response)

	The function for parsing network blocks from jpnic whois data.

	Parameters:	response (str) – The response from the jpnic server.

	Returns:	Mapping of networks with start and end positions.[{
 'cidr' (str) - The network routing block
 'start' (int) - The starting point of the network
 'end' (int) - The endpoint point of the network
}]

	Return type:	list of dict

	
get_nets_krnic(response)

	The function for parsing network blocks from krnic whois data.

	Parameters:	response (str) – The response from the krnic server.

	Returns:	Mapping of networks with start and end positions.[{
 'cidr' (str) - The network routing block
 'start' (int) - The starting point of the network
 'end' (int) - The endpoint point of the network
}]

	Return type:	list of dict

	
lookup(nir=None, inc_raw=False, retry_count=3, response=None, field_list=None, is_offline=False)

	The function for retrieving and parsing NIR whois information for an IP
address via HTTP (HTML scraping).

	Parameters:	
	nir (str) – The NIR to query (‘jpnic’ or ‘krnic’). Required
if response is None.

	inc_raw (bool, optional) – Whether to include the raw
results in the returned dictionary. Defaults to False.

	retry_count (int) – The number of times to retry in case
socket errors, timeouts, connection resets, etc. are
encountered. Defaults to 3.

	response (str) – Optional response object, this bypasses the
NIR lookup. Required when is_offline=True.

	field_list (list of str) – If provided, fields to
parse. Defaults to ipwhois.nir.BASE_NET.

	is_offline (bool) – Whether to perform lookups offline. If
True, response and asn_data must be provided. Primarily used
for testing.

	Returns:	The NIR whois results:

{
 'query' (str) - The IP address.
 'nets' (list of dict) - Network information which consists
 of the fields listed in the ipwhois.nir.NIR_WHOIS
 dictionary.
 'raw' (str) - Raw NIR whois results if the inc_raw
 parameter is True.
}

	Return type:	dict

	
parse_fields(response, fields_dict, net_start=None, net_end=None, dt_format=None, field_list=None, hourdelta=0, is_contact=False)

	The function for parsing whois fields from a data input.

	Parameters:	
	response (str) – The response from the whois/rwhois server.

	fields_dict (dict) – The mapping of fields to regex search
values (required).

	net_start (int) – The starting point of the network (if
parsing multiple networks). Defaults to None.

	net_end (int) – The ending point of the network (if parsing
multiple networks). Defaults to None.

	dt_format (str) – The format of datetime fields if known.
Defaults to None.

	field_list (list of str) – If provided, fields to
parse. Defaults to ipwhois.nir.BASE_NET if is_contact
is False. Otherwise, defaults to
ipwhois.nir.BASE_CONTACT.

	hourdelta (int) – The timezone delta for created/updated
fields. Defaults to 0.

	is_contact (bool) – If True, uses contact information
field parsing. Defaults to False.

	Returns:	
	A dictionary of fields provided in fields_dict, mapping to

	the results of the regex searches.

	Return type:	dict

	
class ipwhois.asn.ASNOrigin(net)

	The class for parsing ASN origin whois data

	Parameters:	net (ipwhois.net.Net) – A ipwhois.net.Net object.

	Raises:	NetError – The parameter provided is not an instance of
ipwhois.net.Net

	
_get_nets_radb(*args, **kwargs)

	Deprecated. This will be removed in a future release.

	
_parse_fields(*args, **kwargs)

	Deprecated. This will be removed in a future release.

	
get_nets_radb(response, is_http=False)

	The function for parsing network blocks from ASN origin data.

	Parameters:	
	response (str) – The response from the RADB whois/http
server.

	is_http (bool) – If the query is RADB HTTP instead of whois,
set to True. Defaults to False.

	Returns:	A list of network block dictionaries

[{
 'cidr' (str) - The assigned CIDR
 'start' (int) - The index for the start of the parsed
 network block
 'end' (int) - The index for the end of the parsed network
 block
}]

	Return type:	list

	
lookup(asn=None, inc_raw=False, retry_count=3, response=None, field_list=None, asn_alts=None, asn_methods=None)

	The function for retrieving and parsing ASN origin whois information
via port 43/tcp (WHOIS).

	Parameters:	
	asn (str) – The ASN (required).

	inc_raw (bool) – Whether to include the raw results in the
returned dictionary. Defaults to False.

	retry_count (int) – The number of times to retry in case
socket errors, timeouts, connection resets, etc. are
encountered. Defaults to 3.

	response (str) – Optional response object, this bypasses the
Whois lookup. Defaults to None.

	field_list (list) – If provided, fields to parse:
[‘description’, ‘maintainer’, ‘updated’, ‘source’]
If None, defaults to all.

	asn_alts (list) – Additional lookup types to attempt if the
ASN whois lookup fails. If None, defaults to all [‘http’].
WARNING deprecated in favor of new argument asn_methods.

	asn_methods (list) – ASN lookup types to attempt, in order.
If None, defaults to all [‘whois’, ‘http’].

	Returns:	The ASN origin lookup results

{
 'query' (str) - The Autonomous System Number
 'nets' (list) - Dictionaries containing network
 information which consists of the fields listed in the
 ASN_ORIGIN_WHOIS dictionary.
 'raw' (str) - Raw ASN origin whois results if the inc_raw
 parameter is True.
}

	Return type:	dict

	Raises:	
	ValueError – methods argument requires one of whois, http.

	ASNOriginLookupError – ASN origin lookup failed.

	
parse_fields(response, fields_dict, net_start=None, net_end=None, field_list=None)

	The function for parsing ASN whois fields from a data input.

	Parameters:	
	response (str) – The response from the whois/rwhois server.

	fields_dict (dict) – Mapping of fields->regex search values.

	net_start (int) – The starting point of the network (if
parsing multiple networks). Defaults to None.

	net_end (int) – The ending point of the network (if parsing
multiple networks). Defaults to None.

	field_list (list) – If provided, a list of fields to parse:
[‘description’, ‘maintainer’, ‘updated’, ‘source’]
If None, defaults to all fields.

	Returns:	A dictionary of fields provided in fields_dict.

	Return type:	dict

	
class ipwhois.asn.IPASN(net)

	The class for parsing ASN data for an IP address.

	Parameters:	net (ipwhois.net.Net) – A ipwhois.net.Net object.

	Raises:	NetError – The parameter provided is not an instance of
ipwhois.net.Net

	
_parse_fields_dns(*args, **kwargs)

	Deprecated. This will be removed in a future release.

	
_parse_fields_http(*args, **kwargs)

	Deprecated. This will be removed in a future release.

	
_parse_fields_whois(*args, **kwargs)

	Deprecated. This will be removed in a future release.

	
lookup(inc_raw=False, retry_count=3, asn_alts=None, extra_org_map=None, asn_methods=None, get_asn_description=True)

	The wrapper function for retrieving and parsing ASN information for an
IP address.

	Parameters:	
	inc_raw (bool) – Whether to include the raw results in the
returned dictionary. Defaults to False.

	retry_count (int) – The number of times to retry in case
socket errors, timeouts, connection resets, etc. are
encountered. Defaults to 3.

	asn_alts (list) – Additional lookup types to attempt if the
ASN dns lookup fails. Allow permutations must be enabled.
Defaults to all [‘whois’, ‘http’]. WARNING deprecated in
favor of new argument asn_methods. Defaults to None.

	extra_org_map (dict) – Mapping org handles to RIRs. This is
for limited cases where ARIN REST (ASN fallback HTTP lookup)
does not show an RIR as the org handle e.g., DNIC (which is
now the built in ORG_MAP) e.g., {‘DNIC’: ‘arin’}. Valid RIR
values are (note the case-sensitive - this is meant to match
the REST result): ‘ARIN’, ‘RIPE’, ‘apnic’, ‘lacnic’, ‘afrinic’
Defaults to None.

	asn_methods (list) – ASN lookup types to attempt, in order.
If None, defaults to all: [‘dns’, ‘whois’, ‘http’].

	get_asn_description (bool) – Whether to run an additional
query when pulling ASN information via dns, in order to get
the ASN description. Defaults to True.

	Returns:	The ASN lookup results

{
 'asn' (str) - The Autonomous System Number
 'asn_date' (str) - The ASN Allocation date
 'asn_registry' (str) - The assigned ASN registry
 'asn_cidr' (str) - The assigned ASN CIDR
 'asn_country_code' (str) - The assigned ASN country code
 'asn_description' (str) - The ASN description
 'raw' (str) - Raw ASN results if the inc_raw parameter is
 True.
}

	Return type:	dict

	Raises:	
	ValueError – methods argument requires one of dns, whois, http.

	ASNRegistryError – ASN registry does not match.

	
parse_fields_dns(response)

	The function for parsing ASN fields from a dns response.

	Parameters:	response (str) – The response from the ASN dns server.

	Returns:	The ASN lookup results

{
 'asn' (str) - The Autonomous System Number
 'asn_date' (str) - The ASN Allocation date
 'asn_registry' (str) - The assigned ASN registry
 'asn_cidr' (str) - The assigned ASN CIDR
 'asn_country_code' (str) - The assigned ASN country code
 'asn_description' (None) - Cannot retrieve with this
 method.
}

	Return type:	dict

	Raises:	
	ASNRegistryError – The ASN registry is not known.

	ASNParseError – ASN parsing failed.

	
parse_fields_http(response, extra_org_map=None)

	The function for parsing ASN fields from a http response.

	Parameters:	
	response (str) – The response from the ASN http server.

	extra_org_map (dict) – Dictionary mapping org handles to
RIRs. This is for limited cases where ARIN REST (ASN fallback
HTTP lookup) does not show an RIR as the org handle e.g., DNIC
(which is now the built in ORG_MAP) e.g., {‘DNIC’: ‘arin’}.
Valid RIR values are (note the case-sensitive - this is meant
to match the REST result): ‘ARIN’, ‘RIPE’, ‘apnic’, ‘lacnic’,
‘afrinic’. Defaults to None.

	Returns:	The ASN lookup results

{
 'asn' (None) - Cannot retrieve with this method.
 'asn_date' (None) - Cannot retrieve with this method.
 'asn_registry' (str) - The assigned ASN registry
 'asn_cidr' (None) - Cannot retrieve with this method.
 'asn_country_code' (None) - Cannot retrieve with this
 method.
 'asn_description' (None) - Cannot retrieve with this
 method.
}

	Return type:	dict

	Raises:	
	ASNRegistryError – The ASN registry is not known.

	ASNParseError – ASN parsing failed.

	
parse_fields_verbose_dns(response)

	The function for parsing ASN fields from a verbose dns response.

	Parameters:	response (str) – The response from the ASN dns server.

	Returns:	The ASN lookup results

{
 'asn' (str) - The Autonomous System Number
 'asn_date' (str) - The ASN Allocation date
 'asn_registry' (str) - The assigned ASN registry
 'asn_cidr' (None) - Cannot retrieve with this method.
 'asn_country_code' (str) - The assigned ASN country code
 'asn_description' (str) - The ASN description
}

	Return type:	dict

	Raises:	
	ASNRegistryError – The ASN registry is not known.

	ASNParseError – ASN parsing failed.

	
parse_fields_whois(response)

	The function for parsing ASN fields from a whois response.

	Parameters:	response (str) – The response from the ASN whois server.

	Returns:	The ASN lookup results

{
 'asn' (str) - The Autonomous System Number
 'asn_date' (str) - The ASN Allocation date
 'asn_registry' (str) - The assigned ASN registry
 'asn_cidr' (str) - The assigned ASN CIDR
 'asn_country_code' (str) - The assigned ASN country code
 'asn_description' (str) - The ASN description
}

	Return type:	dict

	Raises:	
	ASNRegistryError – The ASN registry is not known.

	ASNParseError – ASN parsing failed.

	
ipwhois.utils.calculate_cidr(start_address, end_address)

	The function to calculate a CIDR range(s) from a start and end IP address.

	Parameters:	
	start_address (str) – The starting IP address.

	end_address (str) – The ending IP address.

	Returns:	The calculated CIDR ranges.

	Return type:	list of str

	
ipwhois.utils.get_countries(is_legacy_xml=False)

	The function to generate a dictionary containing ISO_3166-1 country codes
to names.

	Parameters:	is_legacy_xml (bool) – Whether to use the older country code
list (iso_3166-1_list_en.xml).

	Returns:	
	A mapping of country codes as the keys to the country names as

	the values.

	Return type:	dict

	
ipwhois.utils.ipv4_generate_random(total=100)

	The generator to produce random, unique IPv4 addresses that are not
defined (can be looked up using ipwhois).

	Parameters:	total (int) – The total number of IPv4 addresses to generate.

	Yields:	str – The next IPv4 address.

	
ipwhois.utils.ipv4_is_defined(address)

	The function for checking if an IPv4 address is defined (does not need to
be resolved).

	Parameters:	address (str) – An IPv4 address.

	Returns:	

	is_defined (bool):

	 	True if given address is defined, otherwise
False

	ietf_name (str):

	 	IETF assignment name if given address is
defined, otherwise ‘’

	ietf_rfc (str):	IETF assignment RFC if given address is defined,
otherwise ‘’

	Return type:	namedtuple

	
ipwhois.utils.ipv4_lstrip_zeros(address)

	The function to strip leading zeros in each octet of an IPv4 address.

	Parameters:	address (str) – An IPv4 address.

	Returns:	The modified IPv4 address.

	Return type:	str

	
ipwhois.utils.ipv6_generate_random(total=100)

	The generator to produce random, unique IPv6 addresses that are not
defined (can be looked up using ipwhois).

	Parameters:	total (int) – The total number of IPv6 addresses to generate.

	Yields:	str – The next IPv6 address.

	
ipwhois.utils.ipv6_is_defined(address)

	The function for checking if an IPv6 address is defined (does not need to
be resolved).

	Parameters:	address (str) – An IPv6 address.

	Returns:	

	is_defined (bool):

	 	True if given address is defined, otherwise
False

	ietf_name (str):

	 	IETF assignment name if given address is
defined, otherwise ‘’

	ietf_rfc (str):	IETF assignment RFC if given address is defined,
otherwise ‘’

	Return type:	namedtuple

	
ipwhois.utils.unique_addresses(data=None, file_path=None)

	The function to search an input string and/or file, extracting and
counting IPv4/IPv6 addresses/networks. Summarizes ports with sub-counts.
If both a string and file_path are provided, it will process them both.

	Parameters:	
	data (str) – The data to process.

	file_path (str) – An optional file path to process.

	Returns:	The addresses/networks mapped to ports and counts:

{
 '1.2.3.4' (dict) - Each address or network found is a
 dictionary:
 {
 'count' (int) - Total number of times seen.
 'ports' (dict) - Mapping of port numbers as keys and
 the number of times seen for this ip as values.
 }
}

	Return type:	dict

	Raises:	ValueError – Arguments provided are invalid.

	
ipwhois.utils.unique_everseen(iterable, key=None)

	The generator to list unique elements, preserving the order. Remember all
elements ever seen. This was taken from the itertools recipes.

	Parameters:	
	iterable (iter) – An iterable to process.

	key (callable) – Optional function to run when checking
elements (e.g., str.lower)

	Yields:	The next unique element found.

	
exception ipwhois.exceptions.ASNLookupError

	An Exception for when the ASN lookup failed.

	
exception ipwhois.exceptions.ASNOriginLookupError

	An Exception for when the ASN origin lookup failed.

	
exception ipwhois.exceptions.ASNParseError

	An Exception for when the ASN parsing failed.

	
exception ipwhois.exceptions.ASNRegistryError

	An Exception for when the ASN registry does not match one of the five
expected values (arin, ripencc, apnic, lacnic, afrinic).

	
exception ipwhois.exceptions.BlacklistError

	An Exception for when the server is in a blacklist.

	
exception ipwhois.exceptions.HTTPLookupError

	An Exception for when the RDAP lookup failed.

	
exception ipwhois.exceptions.HTTPRateLimitError

	An Exception for when HTTP queries exceed the NIC’s request limit and have
exhausted all retries.

	
exception ipwhois.exceptions.HostLookupError

	An Exception for when the host lookup failed.

	
exception ipwhois.exceptions.IPDefinedError

	An Exception for when the IP is defined (does not need to be resolved).

	
exception ipwhois.exceptions.InvalidEntityContactObject

	An Exception for when JSON output is not an RDAP entity contact information
object:
https://tools.ietf.org/html/rfc7483#section-5.4

	
exception ipwhois.exceptions.InvalidEntityObject

	An Exception for when JSON output is not an RDAP entity object:
https://tools.ietf.org/html/rfc7483#section-5.1

	
exception ipwhois.exceptions.InvalidNetworkObject

	An Exception for when JSON output is not an RDAP network object:
https://tools.ietf.org/html/rfc7483#section-5.4

	
exception ipwhois.exceptions.NetError

	An Exception for when a parameter provided is not an instance of
ipwhois.net.Net.

	
exception ipwhois.exceptions.WhoisLookupError

	An Exception for when the whois lookup failed.

	
exception ipwhois.exceptions.WhoisRateLimitError

	An Exception for when Whois queries exceed the NIC’s request limit and have
exhausted all retries.

	
ipwhois.experimental.bulk_lookup_rdap(addresses=None, inc_raw=False, retry_count=3, depth=0, excluded_entities=None, rate_limit_timeout=60, socket_timeout=10, asn_timeout=240, proxy_openers=None)

	The function for bulk retrieving and parsing whois information for a list
of IP addresses via HTTP (RDAP). This bulk lookup method uses bulk
ASN Whois lookups first to retrieve the ASN for each IP. It then optimizes
RDAP queries to achieve the fastest overall time, accounting for
rate-limiting RIRs.

	Parameters:	
	addresses (list of str) – IP addresses to lookup.

	inc_raw (bool, optional) – Whether to include the raw whois
results in the returned dictionary. Defaults to False.

	retry_count (int) – The number of times to retry in case socket
errors, timeouts, connection resets, etc. are encountered.
Defaults to 3.

	depth (int) – How many levels deep to run queries when additional
referenced objects are found. Defaults to 0.

	excluded_entities (list of str) – Entity handles to not
perform lookups. Defaults to None.

	rate_limit_timeout (int) – The number of seconds to wait before
retrying when a rate limit notice is returned via rdap+json.
Defaults to 60.

	socket_timeout (int) – The default timeout for socket
connections in seconds. Defaults to 10.

	asn_timeout (int) – The default timeout for bulk ASN lookups in
seconds. Defaults to 240.

	proxy_openers (list of OpenerDirector) – Proxy openers
for single/rotating proxy support. Defaults to None.

	Returns:	

	results (dict):	IP address keys with the values as dictionaries
returned by IPWhois.lookup_rdap().

	stats (dict):	Stats for the lookups:

{
 'ip_input_total' (int) - The total number of addresses
 originally provided for lookup via the addresses argument.
 'ip_unique_total' (int) - The total number of unique addresses
 found in the addresses argument.
 'ip_lookup_total' (int) - The total number of addresses that
 lookups were attempted for, excluding any that failed ASN
 registry checks.
 'lacnic' (dict) -
 {
 'failed' (list) - The addresses that failed to lookup.
 Excludes any that failed initially, but succeeded after
 futher retries.
 'rate_limited' (list) - The addresses that encountered
 rate-limiting. Unless an address is also in 'failed',
 it eventually succeeded.
 'total' (int) - The total number of addresses belonging to
 this RIR that lookups were attempted for.
 }
 'ripencc' (dict) - Same as 'lacnic' above.
 'apnic' (dict) - Same as 'lacnic' above.
 'afrinic' (dict) - Same as 'lacnic' above.
 'arin' (dict) - Same as 'lacnic' above.
 'unallocated_addresses' (list) - The addresses that are
 unallocated/failed ASN lookups. These can be addresses that
 are not listed for one of the 5 RIRs (other). No attempt
 was made to perform an RDAP lookup for these.
}

	Return type:	namedtuple

	Raises:	ASNLookupError – The ASN bulk lookup failed, cannot proceed with bulk
RDAP lookup.

	
ipwhois.experimental.get_bulk_asn_whois(addresses=None, retry_count=3, timeout=120)

	The function for retrieving ASN information for multiple IP addresses from
Cymru via port 43/tcp (WHOIS).

	Parameters:	
	addresses (list of str) – IP addresses to lookup.

	retry_count (int) – The number of times to retry in case socket
errors, timeouts, connection resets, etc. are encountered.
Defaults to 3.

	timeout (int) – The default timeout for socket connections in
seconds. Defaults to 120.

	Returns:	The raw ASN bulk data, new line separated.

	Return type:	str

	Raises:	
	ValueError – addresses argument must be a list of IPv4/v6 address
strings.

	ASNLookupError – The ASN bulk lookup failed.

 Python Module Index

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 ipwhois	

 	
 	
 ipwhois.asn	

 	
 	
 ipwhois.exceptions	

 	
 	
 ipwhois.experimental	

 	
 	
 ipwhois.hr	

 	
 	
 ipwhois.ipwhois	

 	
 	
 ipwhois.net	

 	
 	
 ipwhois.nir	

 	
 	
 ipwhois.rdap	

 	
 	
 ipwhois.utils	

 	
 	
 ipwhois.whois	

 Index

Index

 _
 | A
 | B
 | C
 | G
 | H
 | I
 | L
 | N
 | P
 | R
 | S
 | U
 | W

_

 	
 	_get_contact() (ipwhois.nir.NIRWhois method)

 	_get_nets_arin() (ipwhois.whois.Whois method)

 	_get_nets_jpnic() (ipwhois.nir.NIRWhois method)

 	_get_nets_krnic() (ipwhois.nir.NIRWhois method)

 	_get_nets_lacnic() (ipwhois.whois.Whois method)

 	_get_nets_other() (ipwhois.whois.Whois method)

 	_get_nets_radb() (ipwhois.asn.ASNOrigin method)

 	_parse() (ipwhois.rdap._RDAPCommon method)

 	_parse_address() (ipwhois.rdap._RDAPContact method)

 	_parse_email() (ipwhois.rdap._RDAPContact method)

 	_parse_fields() (ipwhois.asn.ASNOrigin method)

 	(ipwhois.nir.NIRWhois method)

 	(ipwhois.whois.Whois method)

 	
 	_parse_fields_dns() (ipwhois.asn.IPASN method)

 	_parse_fields_http() (ipwhois.asn.IPASN method)

 	_parse_fields_whois() (ipwhois.asn.IPASN method)

 	_parse_kind() (ipwhois.rdap._RDAPContact method)

 	_parse_name() (ipwhois.rdap._RDAPContact method)

 	_parse_phone() (ipwhois.rdap._RDAPContact method)

 	_parse_role() (ipwhois.rdap._RDAPContact method)

 	_parse_title() (ipwhois.rdap._RDAPContact method)

 	_RDAPCommon (class in ipwhois.rdap)

 	_RDAPContact (class in ipwhois.rdap)

 	_RDAPEntity (class in ipwhois.rdap)

 	_RDAPNetwork (class in ipwhois.rdap)

A

 	
 	ASNLookupError

 	ASNOrigin (class in ipwhois.asn)

 	
 	ASNOriginLookupError

 	ASNParseError

 	ASNRegistryError

B

 	
 	BlacklistError

 	
 	bulk_lookup_rdap() (in module ipwhois.experimental)

C

 	
 	calculate_cidr() (in module ipwhois.utils)

G

 	
 	get_asn_dns() (ipwhois.net.Net method)

 	get_asn_http() (ipwhois.net.Net method)

 	get_asn_origin_whois() (ipwhois.net.Net method)

 	get_asn_verbose_dns() (ipwhois.net.Net method)

 	get_asn_whois() (ipwhois.net.Net method)

 	get_bulk_asn_whois() (in module ipwhois.experimental)

 	get_contact() (ipwhois.nir.NIRWhois method)

 	get_countries() (in module ipwhois.utils)

 	get_host() (ipwhois.net.Net method)

 	
 	get_http_json() (ipwhois.net.Net method)

 	get_http_raw() (ipwhois.net.Net method)

 	get_nets_arin() (ipwhois.whois.Whois method)

 	get_nets_jpnic() (ipwhois.nir.NIRWhois method)

 	get_nets_krnic() (ipwhois.nir.NIRWhois method)

 	get_nets_lacnic() (ipwhois.whois.Whois method)

 	get_nets_other() (ipwhois.whois.Whois method)

 	get_nets_radb() (ipwhois.asn.ASNOrigin method)

 	get_whois() (ipwhois.net.Net method)

H

 	
 	HostLookupError

 	
 	HTTPLookupError

 	HTTPRateLimitError

I

 	
 	InvalidEntityContactObject

 	InvalidEntityObject

 	InvalidNetworkObject

 	IPASN (class in ipwhois.asn)

 	IPDefinedError

 	ipv4_generate_random() (in module ipwhois.utils)

 	ipv4_is_defined() (in module ipwhois.utils)

 	ipv4_lstrip_zeros() (in module ipwhois.utils)

 	ipv6_generate_random() (in module ipwhois.utils)

 	ipv6_is_defined() (in module ipwhois.utils)

 	IPWhois (class in ipwhois.ipwhois)

 	
 	ipwhois (module)

 	ipwhois.asn (module)

 	ipwhois.exceptions (module)

 	ipwhois.experimental (module)

 	ipwhois.hr (module)

 	ipwhois.ipwhois (module)

 	ipwhois.net (module)

 	ipwhois.nir (module)

 	ipwhois.rdap (module)

 	ipwhois.utils (module)

 	ipwhois.whois (module)

L

 	
 	lookup() (ipwhois.asn.ASNOrigin method)

 	(ipwhois.asn.IPASN method)

 	(ipwhois.nir.NIRWhois method)

 	(ipwhois.rdap.RDAP method)

 	(ipwhois.whois.Whois method)

 	
 	lookup_asn() (ipwhois.net.Net method)

 	lookup_rdap() (ipwhois.ipwhois.IPWhois method)

 	lookup_whois() (ipwhois.ipwhois.IPWhois method)

N

 	
 	Net (class in ipwhois.net)

 	
 	NetError

 	NIRWhois (class in ipwhois.nir)

P

 	
 	parse() (ipwhois.rdap._RDAPContact method)

 	(ipwhois.rdap._RDAPEntity method)

 	(ipwhois.rdap._RDAPNetwork method)

 	parse_fields() (ipwhois.asn.ASNOrigin method)

 	(ipwhois.nir.NIRWhois method)

 	(ipwhois.whois.Whois method)

 	
 	parse_fields_dns() (ipwhois.asn.IPASN method)

 	parse_fields_http() (ipwhois.asn.IPASN method)

 	parse_fields_verbose_dns() (ipwhois.asn.IPASN method)

 	parse_fields_whois() (ipwhois.asn.IPASN method)

R

 	
 	RDAP (class in ipwhois.rdap)

S

 	
 	summarize_events() (ipwhois.rdap._RDAPCommon method)

 	
 	summarize_links() (ipwhois.rdap._RDAPCommon method)

 	summarize_notices() (ipwhois.rdap._RDAPCommon method)

U

 	
 	unique_addresses() (in module ipwhois.utils)

 	
 	unique_everseen() (in module ipwhois.utils)

W

 	
 	Whois (class in ipwhois.whois)

 	
 	WhoisLookupError

 	WhoisRateLimitError

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

nav.xhtml

 Table of Contents

 		ipwhois

 		Readme

 		Summary

 		Features

 		Links

 		Documentation

 		Examples

 		Github

 		Pypi

 		Changes

 		Upgrade Notes

 		Dependencies

 		Installing

 		Firewall Ports

 		API

 		IPWhois (main class)

 		RDAP (HTTP)

 		Legacy Whois

 		National Internet Registries

 		Autonomous System Numbers

 		Utilities

 		Scripts

 		Experimental Functions

 		Contributing

 		IP Reputation Support

 		Domain Support

 		Special Thanks

 		Contributing

 		Issue submission

 		Bug reports

 		Feature Requests

 		Testing

 		Questions

 		Pull Requests

 		What to include

 		GitFlow Model

 		Guidelines

 		License

 		Changes

 		1.0.0 (2017-07-30)

 		0.15.1 (2017-02-16)

 		0.15.0 (2017-02-02)

 		0.14.0 (2016-08-29)

 		0.13.0 (2016-04-18)

 		0.12.0 (2016-03-28)

 		0.11.2 (2016-02-25)

 		0.11.1 (2015-12-17)

 		0.11.0 (2015-11-02)

 		0.10.3 (2015-08-14)

 		0.10.2 (2015-05-19)

 		0.10.1 (2015-02-09)

 		0.10.0 (2015-02-09)

 		Changes (Archive)

 		0.9.1 (2014-10-14)

 		0.9.0 (2014-07-27)

 		0.8.2 (2014-05-12)

 		0.8.1 (2014-03-05)

 		0.8.0 (2014-02-18)

 		0.7.0 (2014-01-14)

 		0.6.0 (2014-01-13)

 		0.5.2 (2013-12-07)

 		0.5.1 (2013-12-03)

 		0.5.0 (2013-11-20)

 		0.4.0 (2013-10-17)

 		0.3.0 (2013-09-30)

 		0.2.1 (2013-09-27)

 		0.2.0 (2013-09-23)

 		0.1.9 (2013-09-18)

 		0.1.8 (2013-09-17)

 		0.1.7 (2013-09-16)

 		0.1.6 (2013-09-16)

 		0.1.5 (2013-09-13)

 		0.1.4 (2013-09-12)

 		0.1.3 (2013-09-11)

 		0.1.2 (2013-09-10)

 		0.1.1 (2013-09-09)

 		0.1.0 (2013-09-06)

 		Upgrade Notes

 		v1.0.0

 		v0.14.0

 		v0.11.0

 		RDAP (Recommended)

 		Input

 		Output

 		Results Dictionary

 		Usage Examples

 		Basic usage

 		Use a proxy

 		Optimizing queries for your network

 		Legacy Whois

 		Input

 		Output

 		Results Dictionary

 		Usage Examples

 		Basic usage

 		Multiple networks listed and referral whois

 		NIR (National Internet Registry)

 		Input (IPWhois Wrapper)

 		Input (Direct)

 		Output

 		Results Dictionary

 		Usage Examples

 		Basic usage

 		IP ASN Lookups

 		IP ASN Input

 		IP ASN Output

 		IP ASN Results Dictionary

 		IP ASN Usage Examples

 		Basic usage

 		ASN Origin Lookups

 		ASN Origin Input

 		ASN Origin Output

 		ASN Origin Results Dictionary

 		ASN Origin Usage Examples

 		Basic usage

 		Utilities

 		Country Codes

 		Human Readable Fields

 		Usage Examples

 		IPv4 Strip Zeros

 		CIDR Calculation

 		Check if IP is reserved/defined

 		Country Code Mapping

 		Iterable to unique elements (order preserved)

 		Parse IPs/ports from text/file

 		Generate random IP addresses

 		CLI

 		ipwhois_cli.py

 		Usage

 		Usage Examples

